state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case h.h
i j : WalkingParallelPair
f : op i ⟶ op j
g : (op j).unop ⟶ (op i).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map f ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op j)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op i)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
| rw [this] | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h
i j : WalkingParallelPair
f : op i ⟶ op j
g : (op j).unop ⟶ (op i).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op j)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op i)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
| cases i | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.zero
j : WalkingParallelPair
f : op zero ⟶ op j
g : (op j).unop ⟶ (op zero).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op j)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> | cases j | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one
j : WalkingParallelPair
f : op one ⟶ op j
g : (op j).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op j)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> | cases j | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.zero.zero
f : op zero ⟶ op zero
g : (op zero).unop ⟶ (op zero).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | cases g | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.zero.one
f : op zero ⟶ op one
g : (op one).unop ⟶ (op zero).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | cases g | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one.zero
f : op one ⟶ op zero
g : (op zero).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | cases g | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one.one
f : op one ⟶ op one
g : (op one).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map g.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map g.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | cases g | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.zero.zero.id
f : op zero ⟶ op zero
g : (op zero).unop ⟶ (op zero).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map (WalkingParallelPairHom.id (op zero).unop).op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map (WalkingParallelPairHom.id (op zero).unop).op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one.zero.left
f : op one ⟶ op zero
g : (op zero).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map left.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map left.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one.zero.right
f : op one ⟶ op zero
g : (op zero).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map right.op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op zero)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map right.op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case h.h.one.one.id
f : op one ⟶ op one
g : (op one).unop ⟶ (op one).unop := f.unop
this : f = g.op
⊢ (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).map (WalkingParallelPairHom.id (op one).unop).op ≫
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom =
((fun j =>
eqToIso
(_ : (walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j = (𝟭 WalkingParallelPairᵒᵖ).obj j))
(op one)).hom ≫
(𝟭 WalkingParallelPairᵒᵖ).map (WalkingParallelPairHom.id (op one).unop).op | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
j : WalkingParallelPair
⊢ walkingParallelPairOp.map
((NatIso.ofComponents fun j =>
eqToIso
(_ :
(𝟭 WalkingParallelPair).obj j =
(walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom.app
j) ≫
(NatIso.ofComponents fun j =>
eqToIso
(_ :
(walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j =
(𝟭 WalkingParallelPairᵒᵖ).obj j)).hom.app
(walkingParallelPairOp.obj j) =
𝟙 (walkingParallelPairOp.obj j) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by | cases j | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
⊢ walkingParallelPairOp.map
((NatIso.ofComponents fun j =>
eqToIso
(_ :
(𝟭 WalkingParallelPair).obj j =
(walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom.app
zero) ≫
(NatIso.ofComponents fun j =>
eqToIso
(_ :
(walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j =
(𝟭 WalkingParallelPairᵒᵖ).obj j)).hom.app
(walkingParallelPairOp.obj zero) =
𝟙 (walkingParallelPairOp.obj zero) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one
⊢ walkingParallelPairOp.map
((NatIso.ofComponents fun j =>
eqToIso
(_ :
(𝟭 WalkingParallelPair).obj j =
(walkingParallelPairOp ⋙ walkingParallelPairOp.leftOp).obj j)).hom.app
one) ≫
(NatIso.ofComponents fun j =>
eqToIso
(_ :
(walkingParallelPairOp.leftOp ⋙ walkingParallelPairOp).obj j =
(𝟭 WalkingParallelPairᵒᵖ).obj j)).hom.app
(walkingParallelPairOp.obj one) =
𝟙 (walkingParallelPairOp.obj one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> | rfl | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.158_0.eJEUq2AFfmN187w | /--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ ∀ {X_1 Y_1 Z : WalkingParallelPair} (f_1 : X_1 ⟶ Y_1) (g_1 : Y_1 ⟶ Z),
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_2 Y_2} h =>
match X_2, Y_2, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(f_1 ≫ g_1) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_2 Y_2} h =>
match X_2, Y_2, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
f_1 ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_2 Y_2} h =>
match X_2, Y_2, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
g_1 | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
| rintro _ _ _ ⟨⟩ g | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g✝ : X ⟶ Y
Z✝ : WalkingParallelPair
g : one ⟶ Z✝
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
(left ≫ g) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
left ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | cases g | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g✝ : X ⟶ Y
Z✝ : WalkingParallelPair
g : one ⟶ Z✝
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
(right ≫ g) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
right ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | cases g | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g✝ : X ⟶ Y
X✝ Z✝ : WalkingParallelPair
g : X✝ ⟶ Z✝
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
(WalkingParallelPairHom.id X✝ ≫ g) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
(WalkingParallelPairHom.id X✝) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g✝ }.map
g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | cases g | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(left ≫ WalkingParallelPairHom.id one) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
left ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | {dsimp; simp} | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(left ≫ WalkingParallelPairHom.id one) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
left ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | dsimp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ (match zero, one, left ≫ 𝟙 one with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
(match x with
| zero => X
| one => Y)
| .(zero), .(one), left => f
| .(zero), .(one), right => g) =
f ≫ 𝟙 Y | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | simp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(right ≫ WalkingParallelPairHom.id one) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
right ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | {dsimp; simp} | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(right ≫ WalkingParallelPairHom.id one) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
right ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | dsimp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ (match zero, one, right ≫ 𝟙 one with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
(match x with
| zero => X
| one => Y)
| .(zero), .(one), left => f
| .(zero), .(one), right => g) =
g ≫ 𝟙 Y | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | simp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero ≫ left) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | {dsimp; simp} | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero ≫ left) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | dsimp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ (match zero, one, 𝟙 zero ≫ left with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
(match x with
| zero => X
| one => Y)
| .(zero), .(one), left => f
| .(zero), .(one), right => g) =
𝟙 X ≫ f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | simp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero ≫ right) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | {dsimp; simp} | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero ≫ right) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id zero) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | dsimp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
⊢ (match zero, one, 𝟙 zero ≫ right with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
(match x with
| zero => X
| one => Y)
| .(zero), .(one), left => f
| .(zero), .(one), right => g) =
𝟙 X ≫ g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | simp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
X✝ : WalkingParallelPair
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝ ≫ WalkingParallelPairHom.id X✝) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | {dsimp; simp} | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
X✝ : WalkingParallelPair
⊢ {
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝ ≫ WalkingParallelPairHom.id X✝) =
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝) ≫
{
obj := fun x =>
match x with
| zero => X
| one => Y,
map := fun {X_1 Y_1} h =>
match X_1, Y_1, h with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
((fun x =>
match x with
| zero => X
| one => Y)
x)
| .(zero), .(one), left => f
| .(zero), .(one), right => g }.map
(WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | dsimp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
X✝ : WalkingParallelPair
⊢ (match X✝, X✝, 𝟙 X✝ ≫ 𝟙 X✝ with
| x, .(x), WalkingParallelPairHom.id .(x) =>
𝟙
(match x with
| zero => X
| one => Y)
| .(zero), .(one), left => f
| .(zero), .(one), right => g) =
𝟙
(match X✝ with
| zero => X
| one => Y) ≫
𝟙
(match X✝ with
| zero => X
| one => Y) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | simp | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.208_0.eJEUq2AFfmN187w | /-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
j : WalkingParallelPair
⊢ (parallelPair (F.map left) (F.map right)).obj j = F.obj j | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by | cases j | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.241_0.eJEUq2AFfmN187w | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ (parallelPair (F.map left) (F.map right)).obj zero = F.obj zero | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> | rfl | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.241_0.eJEUq2AFfmN187w | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ (parallelPair (F.map left) (F.map right)).obj one = F.obj one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> | rfl | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.241_0.eJEUq2AFfmN187w | @[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
j : WalkingParallelPair
⊢ F.obj j = (parallelPair (F.map left) (F.map right)).obj j | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by | cases j | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ F.obj zero = (parallelPair (F.map left) (F.map right)).obj zero | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> | rfl | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ F.obj one = (parallelPair (F.map left) (F.map right)).obj one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> | rfl | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ ∀ {X Y : WalkingParallelPair} (f : X ⟶ Y),
F.map f ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) Y).hom =
((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X).hom ≫
(parallelPair (F.map left) (F.map right)).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by | rintro _ _ (_|_|_) | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ F.map left ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) one).hom =
((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) zero).hom ≫
(parallelPair (F.map left) (F.map right)).map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | simp | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
⊢ F.map right ≫ ((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) one).hom =
((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) zero).hom ≫
(parallelPair (F.map left) (F.map right)).map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | simp | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F : WalkingParallelPair ⥤ C
X✝ : WalkingParallelPair
⊢ F.map (WalkingParallelPairHom.id X✝) ≫
((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X✝).hom =
((fun j => eqToIso (_ : F.obj j = (parallelPair (F.map left) (F.map right)).obj j)) X✝).hom ≫
(parallelPair (F.map left) (F.map right)).map (WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | simp | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.246_0.eJEUq2AFfmN187w | /-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ ∀ ⦃X_1 Y_1 : WalkingParallelPair⦄ (f_1 : X_1 ⟶ Y_1),
(parallelPair f g).map f_1 ≫
(fun j =>
match j with
| zero => p
| one => q)
Y_1 =
(fun j =>
match j with
| zero => p
| one => q)
X_1 ≫
(parallelPair f' g').map f_1 | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
| rintro _ _ ⟨⟩ | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ (parallelPair f g).map left ≫
(fun j =>
match j with
| zero => p
| one => q)
one =
(fun j =>
match j with
| zero => p
| one => q)
zero ≫
(parallelPair f' g').map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | {dsimp; simp [wf,wg]} | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ (parallelPair f g).map left ≫
(fun j =>
match j with
| zero => p
| one => q)
one =
(fun j =>
match j with
| zero => p
| one => q)
zero ≫
(parallelPair f' g').map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | dsimp | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ f ≫ q = p ≫ f' | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | simp [wf,wg] | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ (parallelPair f g).map right ≫
(fun j =>
match j with
| zero => p
| one => q)
one =
(fun j =>
match j with
| zero => p
| one => q)
zero ≫
(parallelPair f' g').map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | {dsimp; simp [wf,wg]} | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ (parallelPair f g).map right ≫
(fun j =>
match j with
| zero => p
| one => q)
one =
(fun j =>
match j with
| zero => p
| one => q)
zero ≫
(parallelPair f' g').map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | dsimp | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
⊢ g ≫ q = p ≫ g' | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | simp [wf,wg] | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
X✝ : WalkingParallelPair
⊢ (parallelPair f g).map (WalkingParallelPairHom.id X✝) ≫
(fun j =>
match j with
| zero => p
| one => q)
X✝ =
(fun j =>
match j with
| zero => p
| one => q)
X✝ ≫
(parallelPair f' g').map (WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | {dsimp; simp [wf,wg]} | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
X✝ : WalkingParallelPair
⊢ (parallelPair f g).map (WalkingParallelPairHom.id X✝) ≫
(fun j =>
match j with
| zero => p
| one => q)
X✝ =
(fun j =>
match j with
| zero => p
| one => q)
X✝ ≫
(parallelPair f' g').map (WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | dsimp | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> { | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y X' Y' : C
f g : X ⟶ Y
f' g' : X' ⟶ Y'
p : X ⟶ X'
q : Y ⟶ Y'
wf : f ≫ q = p ≫ f'
wg : g ≫ q = p ≫ g'
X✝ : WalkingParallelPair
⊢ ((parallelPair f g).map (𝟙 X✝) ≫
match X✝ with
| zero => p
| one => q) =
(match X✝ with
| zero => p
| one => q) ≫
(parallelPair f' g').map (𝟙 X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | simp [wf,wg] | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.254_0.eJEUq2AFfmN187w | /-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ (X : WalkingParallelPair) → F.obj X ≅ G.obj X | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
| rintro ⟨j⟩ | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
case one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
| exacts [zero, one] | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ ∀ {X Y : WalkingParallelPair} (f : X ⟶ Y),
F.map f ≫ (WalkingParallelPair.casesOn Y zero one).hom = (WalkingParallelPair.casesOn X zero one).hom ≫ G.map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by | rintro _ _ ⟨_⟩ | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫
(WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.one zero one).hom =
(WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.zero zero one).hom ≫
G.map CategoryTheory.Limits.WalkingParallelPairHom.left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | simp [left, right] | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
⊢ F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫
(WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.one zero one).hom =
(WalkingParallelPair.casesOn CategoryTheory.Limits.WalkingParallelPair.zero zero one).hom ≫
G.map CategoryTheory.Limits.WalkingParallelPairHom.right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | simp [left, right] | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
F G : WalkingParallelPair ⥤ C
zero : F.obj CategoryTheory.Limits.WalkingParallelPair.zero ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.zero
one : F.obj CategoryTheory.Limits.WalkingParallelPair.one ≅ G.obj CategoryTheory.Limits.WalkingParallelPair.one
left :
F.map CategoryTheory.Limits.WalkingParallelPairHom.left ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.left
right :
F.map CategoryTheory.Limits.WalkingParallelPairHom.right ≫ one.hom =
zero.hom ≫ G.map CategoryTheory.Limits.WalkingParallelPairHom.right
X✝ : WalkingParallelPair
⊢ F.map (WalkingParallelPairHom.id X✝) ≫ (WalkingParallelPair.casesOn X✝ zero one).hom =
(WalkingParallelPair.casesOn X✝ zero one).hom ≫ G.map (WalkingParallelPairHom.id X✝) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | simp [left, right] | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.280_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g f' g' : X ⟶ Y
hf : f = f'
hg : g = g'
⊢ (parallelPair f g).map left ≫ (Iso.refl ((parallelPair f g).obj one)).hom =
(Iso.refl ((parallelPair f g).obj zero)).hom ≫ (parallelPair f' g').map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by | simp [hf] | /-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.293_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g f' g' : X ⟶ Y
hf : f = f'
hg : g = g'
⊢ (parallelPair f g).map right ≫ (Iso.refl ((parallelPair f g).obj one)).hom =
(Iso.refl ((parallelPair f g).obj zero)).hom ≫ (parallelPair f' g').map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by | simp [hg] | /-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.293_0.eJEUq2AFfmN187w | /-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
⊢ s.π.app one = ι s ≫ f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
| rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left] | @[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.338_0.eJEUq2AFfmN187w | @[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
⊢ s.π.app one = ι s ≫ g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
| rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right] | @[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.343_0.eJEUq2AFfmN187w | @[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Cofork f g
⊢ s.ι.app zero = f ≫ π s | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
| rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left] | @[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.348_0.eJEUq2AFfmN187w | @[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Cofork f g
⊢ s.ι.app zero = g ≫ π s | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
| rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right] | @[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.353_0.eJEUq2AFfmN187w | @[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X✝ Y : C
f g : X✝ ⟶ Y
P : C
ι : P ⟶ X✝
w : ι ≫ f = ι ≫ g
X : WalkingParallelPair
⊢ ((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f g).obj X | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by | cases X | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).obj zero ⟶ (parallelPair f g).obj zero
case one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).obj one ⟶ (parallelPair f g).obj one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; | exact ι | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).obj one ⟶ (parallelPair f g).obj one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; | exact ι ≫ f | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : C
f✝ g : X✝ ⟶ Y✝
P : C
ι : P ⟶ X✝
w : ι ≫ f✝ = ι ≫ g
X Y : WalkingParallelPair
f : X ⟶ Y
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X =>
WalkingParallelPair.casesOn (motive := fun t =>
X = t → (((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f✝ g).obj X)) X
(fun h => (_ : zero = X) ▸ ι) (fun h => (_ : one = X) ▸ ι ≫ f✝) (_ : X = X))
Y =
(fun X =>
WalkingParallelPair.casesOn (motive := fun t =>
X = t → (((Functor.const WalkingParallelPair).obj P).obj X ⟶ (parallelPair f✝ g).obj X)) X
(fun h => (_ : zero = X) ▸ ι) (fun h => (_ : one = X) ▸ ι ≫ f✝) (_ : X = X))
X ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by | cases X | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero
C : Type u
inst✝ : Category.{v, u} C
X Y✝ : C
f✝ g : X ⟶ Y✝
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
Y : WalkingParallelPair
f : zero ⟶ Y
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
Y =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
zero ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> | cases Y | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one
C : Type u
inst✝ : Category.{v, u} C
X Y✝ : C
f✝ g : X ⟶ Y✝
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
Y : WalkingParallelPair
f : one ⟶ Y
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
Y =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
one ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> | cases Y | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f✝ g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
f : zero ⟶ zero
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
zero =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
zero ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | cases f | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f✝ g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
f : zero ⟶ one
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
one =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
zero ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | cases f | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one.zero
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f✝ g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
f : one ⟶ zero
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
zero =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
one ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | cases f | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one.one
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f✝ g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f✝ = ι ≫ g
f : one ⟶ one
⊢ ((Functor.const WalkingParallelPair).obj P).map f ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
one =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f✝ g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f✝) (_ : X_1 = X_1))
one ≫
(parallelPair f✝ g).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | cases f | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.zero.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id zero) ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
zero =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
zero ≫
(parallelPair f g).map (WalkingParallelPairHom.id zero) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | dsimp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one.left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).map left ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
one =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
zero ≫
(parallelPair f g).map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | dsimp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).map right ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
one =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
zero ≫
(parallelPair f g).map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | dsimp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one.one.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id one) ≫
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
one =
(fun X_1 =>
WalkingParallelPair.casesOn (motive := fun t =>
X_1 = t → (((Functor.const WalkingParallelPair).obj P).obj X_1 ⟶ (parallelPair f g).obj X_1)) X_1
(fun h => (_ : zero = X_1) ▸ ι) (fun h => (_ : one = X_1) ▸ ι ≫ f) (_ : X_1 = X_1))
one ≫
(parallelPair f g).map (WalkingParallelPairHom.id one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | dsimp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.zero.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ 𝟙 P ≫ ι = ι ≫ (parallelPair f g).map (𝟙 zero) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | simp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one.left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ 𝟙 P ≫ ι ≫ f = ι ≫ f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | simp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ 𝟙 P ≫ ι ≫ f = ι ≫ g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | simp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case one.one.id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ 𝟙 P ≫ ι ≫ f = (ι ≫ f) ≫ (parallelPair f g).map (𝟙 one) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | simp | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case zero.one.right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
ι : P ⟶ X
w : ι ≫ f = ι ≫ g
⊢ ι ≫ f = ι ≫ g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; | assumption | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.358_0.eJEUq2AFfmN187w | /-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f✝ g : X ⟶ Y
P : C
π : Y ⟶ P
w : f✝ ≫ π = g ≫ π
i j : WalkingParallelPair
f : i ⟶ j
⊢ (parallelPair f✝ g).map f ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f✝ ≫ π) π) j =
(fun X_1 => WalkingParallelPair.casesOn X_1 (f✝ ≫ π) π) i ≫ ((Functor.const WalkingParallelPair).obj P).map f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by | cases f | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
⊢ (parallelPair f g).map left ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) one =
(fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) zero ≫ ((Functor.const WalkingParallelPair).obj P).map left | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | dsimp | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
⊢ (parallelPair f g).map right ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) one =
(fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) zero ≫ ((Functor.const WalkingParallelPair).obj P).map right | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | dsimp | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
i : WalkingParallelPair
⊢ (parallelPair f g).map (WalkingParallelPairHom.id i) ≫ (fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) i =
(fun X_1 => WalkingParallelPair.casesOn X_1 (f ≫ π) π) i ≫
((Functor.const WalkingParallelPair).obj P).map (WalkingParallelPairHom.id i) | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | dsimp | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case left
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
⊢ f ≫ π = (f ≫ π) ≫ 𝟙 P | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | simp [w] | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case right
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
⊢ g ≫ π = (f ≫ π) ≫ 𝟙 P | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | simp [w] | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
case id
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
P : C
π : Y ⟶ P
w : f ≫ π = g ≫ π
i : WalkingParallelPair
⊢ (parallelPair f g).map (𝟙 i) ≫ WalkingParallelPair.rec (f ≫ π) π i = WalkingParallelPair.rec (f ≫ π) π i ≫ 𝟙 P | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | simp [w] | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.369_0.eJEUq2AFfmN187w | /-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
t : Fork f g
⊢ ι t ≫ f = ι t ≫ g | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
| rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right] | @[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.390_0.eJEUq2AFfmN187w | @[reassoc (attr | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
t : Cofork f g
⊢ f ≫ π t = g ≫ π t | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
| rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right] | @[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.395_0.eJEUq2AFfmN187w | @[reassoc (attr | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
W : C
k l : W ⟶ s.pt
h : k ≫ ι s = l ≫ ι s
⊢ k ≫ s.π.app one = l ≫ s.π.app one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
| have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; exact congrArg (· ≫ f) h | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.400_0.eJEUq2AFfmN187w | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
W : C
k l : W ⟶ s.pt
h : k ≫ ι s = l ≫ ι s
⊢ k ≫ ι s ≫ f = l ≫ ι s ≫ f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
| simp only [← Category.assoc] | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.400_0.eJEUq2AFfmN187w | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
W : C
k l : W ⟶ s.pt
h : k ≫ ι s = l ≫ ι s
⊢ (k ≫ ι s) ≫ f = (l ≫ ι s) ≫ f | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; | exact congrArg (· ≫ f) h | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.400_0.eJEUq2AFfmN187w | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
W : C
k l : W ⟶ s.pt
h : k ≫ ι s = l ≫ ι s
this : k ≫ ι s ≫ f = l ≫ ι s ≫ f
⊢ k ≫ s.π.app one = l ≫ s.π.app one | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; exact congrArg (· ≫ f) h
| rw [s.app_one_eq_ι_comp_left, this] | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; exact congrArg (· ≫ f) h
| Mathlib.CategoryTheory.Limits.Shapes.Equalizers.400_0.eJEUq2AFfmN187w | /-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Cofork f g
W : C
k l : s.pt ⟶ W
h : π s ≫ k = π s ≫ l
⊢ s.ι.app zero ≫ k = s.ι.app zero ≫ l | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; exact congrArg (· ≫ f) h
rw [s.app_one_eq_ι_comp_left, this]
#align category_theory.limits.fork.equalizer_ext CategoryTheory.Limits.Fork.equalizer_ext
/-- To check whether two maps are coequalized by both maps of a cofork, it suffices to check it for
the second map -/
theorem Cofork.coequalizer_ext (s : Cofork f g) {W : C} {k l : s.pt ⟶ W}
(h : Cofork.π s ≫ k = Cofork.π s ≫ l) : ∀ j : WalkingParallelPair, s.ι.app j ≫ k = s.ι.app j ≫ l
| zero => by | simp only [s.app_zero_eq_comp_π_left, Category.assoc, h] | /-- To check whether two maps are coequalized by both maps of a cofork, it suffices to check it for
the second map -/
theorem Cofork.coequalizer_ext (s : Cofork f g) {W : C} {k l : s.pt ⟶ W}
(h : Cofork.π s ≫ k = Cofork.π s ≫ l) : ∀ j : WalkingParallelPair, s.ι.app j ≫ k = s.ι.app j ≫ l
| zero => by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.411_0.eJEUq2AFfmN187w | /-- To check whether two maps are coequalized by both maps of a cofork, it suffices to check it for
the second map -/
theorem Cofork.coequalizer_ext (s : Cofork f g) {W : C} {k l : s.pt ⟶ W}
(h : Cofork.π s ≫ k = Cofork.π s ≫ l) : ∀ j : WalkingParallelPair, s.ι.app j ≫ k = s.ι.app j ≫ l
| zero => by simp only [s.app_zero_eq_comp_π_left, Category.assoc, h]
| one => h | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
C : Type u
inst✝ : Category.{v, u} C
X Y : C
f g : X ⟶ Y
s : Fork f g
hs : IsLimit s
W : C
k : W ⟶ X
h : k ≫ f = k ≫ g
⊢ lift hs k h ≫ ι s = k | /-
Copyright (c) 2018 Scott Morrison. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Scott Morrison, Markus Himmel
-/
import Mathlib.CategoryTheory.EpiMono
import Mathlib.CategoryTheory.Limits.HasLimits
#align_import category_theory.limits.shapes.equalizers from "leanprover-community/mathlib"@"4698e35ca56a0d4fa53aa5639c3364e0a77f4eba"
/-!
# Equalizers and coequalizers
This file defines (co)equalizers as special cases of (co)limits.
An equalizer is the categorical generalization of the subobject {a ∈ A | f(a) = g(a)} known
from abelian groups or modules. It is a limit cone over the diagram formed by `f` and `g`.
A coequalizer is the dual concept.
## Main definitions
* `WalkingParallelPair` is the indexing category used for (co)equalizer_diagrams
* `parallelPair` is a functor from `WalkingParallelPair` to our category `C`.
* a `fork` is a cone over a parallel pair.
* there is really only one interesting morphism in a fork: the arrow from the vertex of the fork
to the domain of f and g. It is called `fork.ι`.
* an `equalizer` is now just a `limit (parallelPair f g)`
Each of these has a dual.
## Main statements
* `equalizer.ι_mono` states that every equalizer map is a monomorphism
* `isIso_limit_cone_parallelPair_of_self` states that the identity on the domain of `f` is an
equalizer of `f` and `f`.
## Implementation notes
As with the other special shapes in the limits library, all the definitions here are given as
`abbreviation`s of the general statements for limits, so all the `simp` lemmas and theorems about
general limits can be used.
## References
* [F. Borceux, *Handbook of Categorical Algebra 1*][borceux-vol1]
-/
/- Porting note: removed global noncomputable since there are things that might be
computable value like WalkingPair -/
section
open CategoryTheory Opposite
namespace CategoryTheory.Limits
-- attribute [local tidy] tactic.case_bash -- Porting note: no tidy nor cases_bash
universe v v₂ u u₂
/-- The type of objects for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPair : Type
| zero
| one
deriving DecidableEq, Inhabited
#align category_theory.limits.walking_parallel_pair CategoryTheory.Limits.WalkingParallelPair
open WalkingParallelPair
/-- The type family of morphisms for the diagram indexing a (co)equalizer. -/
inductive WalkingParallelPairHom : WalkingParallelPair → WalkingParallelPair → Type
| left : WalkingParallelPairHom zero one
| right : WalkingParallelPairHom zero one
| id (X : WalkingParallelPair) : WalkingParallelPairHom X X
deriving DecidableEq
#align category_theory.limits.walking_parallel_pair_hom CategoryTheory.Limits.WalkingParallelPairHom
/- Porting note: this simplifies using walkingParallelPairHom_id; replacement is below;
simpNF still complains of striking this from the simp list -/
attribute [-simp, nolint simpNF] WalkingParallelPairHom.id.sizeOf_spec
/-- Satisfying the inhabited linter -/
instance : Inhabited (WalkingParallelPairHom zero one) where default := WalkingParallelPairHom.left
open WalkingParallelPairHom
/-- Composition of morphisms in the indexing diagram for (co)equalizers. -/
def WalkingParallelPairHom.comp :
-- Porting note: changed X Y Z to implicit to match comp fields in precategory
∀ { X Y Z : WalkingParallelPair } (_ : WalkingParallelPairHom X Y)
(_ : WalkingParallelPairHom Y Z), WalkingParallelPairHom X Z
| _, _, _, id _, h => h
| _, _, _, left, id one => left
| _, _, _, right, id one => right
#align category_theory.limits.walking_parallel_pair_hom.comp CategoryTheory.Limits.WalkingParallelPairHom.comp
-- Porting note: adding these since they are simple and aesop couldn't directly prove them
theorem WalkingParallelPairHom.id_comp
{X Y : WalkingParallelPair} (g : WalkingParallelPairHom X Y) : comp (id X) g = g :=
rfl
theorem WalkingParallelPairHom.comp_id
{X Y : WalkingParallelPair} (f : WalkingParallelPairHom X Y) : comp f (id Y) = f := by
cases f <;> rfl
theorem WalkingParallelPairHom.assoc {X Y Z W : WalkingParallelPair}
(f : WalkingParallelPairHom X Y) (g: WalkingParallelPairHom Y Z)
(h : WalkingParallelPairHom Z W) : comp (comp f g) h = comp f (comp g h) := by
cases f <;> cases g <;> cases h <;> rfl
instance walkingParallelPairHomCategory : SmallCategory WalkingParallelPair where
Hom := WalkingParallelPairHom
id := id
comp := comp
comp_id := comp_id
id_comp := id_comp
assoc := assoc
#align category_theory.limits.walking_parallel_pair_hom_category CategoryTheory.Limits.walkingParallelPairHomCategory
@[simp]
theorem walkingParallelPairHom_id (X : WalkingParallelPair) : WalkingParallelPairHom.id X = 𝟙 X :=
rfl
#align category_theory.limits.walking_parallel_pair_hom_id CategoryTheory.Limits.walkingParallelPairHom_id
-- Porting note: simpNF asked me to do this because the LHS of the non-primed version reduced
@[simp]
theorem WalkingParallelPairHom.id.sizeOf_spec' (X : WalkingParallelPair) :
(WalkingParallelPairHom._sizeOf_inst X X).sizeOf (𝟙 X) = 1 + sizeOf X := by cases X <;> rfl
/-- The functor `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
def walkingParallelPairOp : WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ where
obj x := op <| by cases x; exacts [one, zero]
map f := by
cases f <;> apply Quiver.Hom.op
exacts [left, right, WalkingParallelPairHom.id _]
map_comp := by rintro _ _ _ (_|_|_) g <;> cases g <;> rfl
#align category_theory.limits.walking_parallel_pair_op CategoryTheory.Limits.walkingParallelPairOp
@[simp]
theorem walkingParallelPairOp_zero : walkingParallelPairOp.obj zero = op one := rfl
#align category_theory.limits.walking_parallel_pair_op_zero CategoryTheory.Limits.walkingParallelPairOp_zero
@[simp]
theorem walkingParallelPairOp_one : walkingParallelPairOp.obj one = op zero := rfl
#align category_theory.limits.walking_parallel_pair_op_one CategoryTheory.Limits.walkingParallelPairOp_one
@[simp]
theorem walkingParallelPairOp_left :
walkingParallelPairOp.map left = @Quiver.Hom.op _ _ zero one left := rfl
#align category_theory.limits.walking_parallel_pair_op_left CategoryTheory.Limits.walkingParallelPairOp_left
@[simp]
theorem walkingParallelPairOp_right :
walkingParallelPairOp.map right = @Quiver.Hom.op _ _ zero one right := rfl
#align category_theory.limits.walking_parallel_pair_op_right CategoryTheory.Limits.walkingParallelPairOp_right
/--
The equivalence `WalkingParallelPair ⥤ WalkingParallelPairᵒᵖ` sending left to left and right to
right.
-/
@[simps functor inverse]
def walkingParallelPairOpEquiv : WalkingParallelPair ≌ WalkingParallelPairᵒᵖ where
functor := walkingParallelPairOp
inverse := walkingParallelPairOp.leftOp
unitIso :=
NatIso.ofComponents (fun j => eqToIso (by cases j <;> rfl))
(by rintro _ _ (_ | _ | _) <;> simp)
counitIso :=
NatIso.ofComponents (fun j => eqToIso (by
induction' j with X
cases X <;> rfl))
(fun {i} {j} f => by
induction' i with i
induction' j with j
let g := f.unop
have : f = g.op := rfl
rw [this]
cases i <;> cases j <;> cases g <;> rfl)
functor_unitIso_comp := fun j => by cases j <;> rfl
#align category_theory.limits.walking_parallel_pair_op_equiv CategoryTheory.Limits.walkingParallelPairOpEquiv
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_zero :
walkingParallelPairOpEquiv.unitIso.app zero = Iso.refl zero := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_unitIso_one :
walkingParallelPairOpEquiv.unitIso.app one = Iso.refl one := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_unit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_unitIso_one
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_zero :
walkingParallelPairOpEquiv.counitIso.app (op zero) = Iso.refl (op zero) := rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_zero CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_zero
@[simp]
theorem walkingParallelPairOpEquiv_counitIso_one :
walkingParallelPairOpEquiv.counitIso.app (op one) = Iso.refl (op one) :=
rfl
#align category_theory.limits.walking_parallel_pair_op_equiv_counit_iso_one CategoryTheory.Limits.walkingParallelPairOpEquiv_counitIso_one
variable {C : Type u} [Category.{v} C]
variable {X Y : C}
/-- `parallelPair f g` is the diagram in `C` consisting of the two morphisms `f` and `g` with
common domain and codomain. -/
def parallelPair (f g : X ⟶ Y) : WalkingParallelPair ⥤ C where
obj x :=
match x with
| zero => X
| one => Y
map h :=
match h with
| WalkingParallelPairHom.id _ => 𝟙 _
| left => f
| right => g
-- `sorry` can cope with this, but it's too slow:
map_comp := by
rintro _ _ _ ⟨⟩ g <;> cases g <;> {dsimp; simp}
#align category_theory.limits.parallel_pair CategoryTheory.Limits.parallelPair
@[simp]
theorem parallelPair_obj_zero (f g : X ⟶ Y) : (parallelPair f g).obj zero = X := rfl
#align category_theory.limits.parallel_pair_obj_zero CategoryTheory.Limits.parallelPair_obj_zero
@[simp]
theorem parallelPair_obj_one (f g : X ⟶ Y) : (parallelPair f g).obj one = Y := rfl
#align category_theory.limits.parallel_pair_obj_one CategoryTheory.Limits.parallelPair_obj_one
@[simp]
theorem parallelPair_map_left (f g : X ⟶ Y) : (parallelPair f g).map left = f := rfl
#align category_theory.limits.parallel_pair_map_left CategoryTheory.Limits.parallelPair_map_left
@[simp]
theorem parallelPair_map_right (f g : X ⟶ Y) : (parallelPair f g).map right = g := rfl
#align category_theory.limits.parallel_pair_map_right CategoryTheory.Limits.parallelPair_map_right
@[simp]
theorem parallelPair_functor_obj {F : WalkingParallelPair ⥤ C} (j : WalkingParallelPair) :
(parallelPair (F.map left) (F.map right)).obj j = F.obj j := by cases j <;> rfl
#align category_theory.limits.parallel_pair_functor_obj CategoryTheory.Limits.parallelPair_functor_obj
/-- Every functor indexing a (co)equalizer is naturally isomorphic (actually, equal) to a
`parallelPair` -/
@[simps!]
def diagramIsoParallelPair (F : WalkingParallelPair ⥤ C) :
F ≅ parallelPair (F.map left) (F.map right) :=
NatIso.ofComponents (fun j => eqToIso <| by cases j <;> rfl) (by rintro _ _ (_|_|_) <;> simp)
#align category_theory.limits.diagram_iso_parallel_pair CategoryTheory.Limits.diagramIsoParallelPair
/-- Construct a morphism between parallel pairs. -/
def parallelPairHom {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X') (q : Y ⟶ Y')
(wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') : parallelPair f g ⟶ parallelPair f' g'
where
app j :=
match j with
| zero => p
| one => q
naturality := by
rintro _ _ ⟨⟩ <;> {dsimp; simp [wf,wg]}
#align category_theory.limits.parallel_pair_hom CategoryTheory.Limits.parallelPairHom
@[simp]
theorem parallelPairHom_app_zero {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app zero = p :=
rfl
#align category_theory.limits.parallel_pair_hom_app_zero CategoryTheory.Limits.parallelPairHom_app_zero
@[simp]
theorem parallelPairHom_app_one {X' Y' : C} (f g : X ⟶ Y) (f' g' : X' ⟶ Y') (p : X ⟶ X')
(q : Y ⟶ Y') (wf : f ≫ q = p ≫ f') (wg : g ≫ q = p ≫ g') :
(parallelPairHom f g f' g' p q wf wg).app one = q :=
rfl
#align category_theory.limits.parallel_pair_hom_app_one CategoryTheory.Limits.parallelPairHom_app_one
/-- Construct a natural isomorphism between functors out of the walking parallel pair from
its components. -/
@[simps!]
def parallelPair.ext {F G : WalkingParallelPair ⥤ C} (zero : F.obj zero ≅ G.obj zero)
(one : F.obj one ≅ G.obj one) (left : F.map left ≫ one.hom = zero.hom ≫ G.map left)
(right : F.map right ≫ one.hom = zero.hom ≫ G.map right) : F ≅ G :=
NatIso.ofComponents
(by
rintro ⟨j⟩
exacts [zero, one])
(by rintro _ _ ⟨_⟩ <;> simp [left, right])
#align category_theory.limits.parallel_pair.ext CategoryTheory.Limits.parallelPair.ext
/-- Construct a natural isomorphism between `parallelPair f g` and `parallelPair f' g'` given
equalities `f = f'` and `g = g'`. -/
@[simps!]
def parallelPair.eqOfHomEq {f g f' g' : X ⟶ Y} (hf : f = f') (hg : g = g') :
parallelPair f g ≅ parallelPair f' g' :=
parallelPair.ext (Iso.refl _) (Iso.refl _) (by simp [hf]) (by simp [hg])
#align category_theory.limits.parallel_pair.eq_of_hom_eq CategoryTheory.Limits.parallelPair.eqOfHomEq
/-- A fork on `f` and `g` is just a `Cone (parallelPair f g)`. -/
abbrev Fork (f g : X ⟶ Y) :=
Cone (parallelPair f g)
#align category_theory.limits.fork CategoryTheory.Limits.Fork
/-- A cofork on `f` and `g` is just a `Cocone (parallelPair f g)`. -/
abbrev Cofork (f g : X ⟶ Y) :=
Cocone (parallelPair f g)
#align category_theory.limits.cofork CategoryTheory.Limits.Cofork
variable {f g : X ⟶ Y}
/-- A fork `t` on the parallel pair `f g : X ⟶ Y` consists of two morphisms
`t.π.app zero : t.pt ⟶ X`
and `t.π.app one : t.pt ⟶ Y`. Of these, only the first one is interesting, and we give it the
shorter name `Fork.ι t`. -/
def Fork.ι (t : Fork f g) :=
t.π.app zero
#align category_theory.limits.fork.ι CategoryTheory.Limits.Fork.ι
@[simp]
theorem Fork.app_zero_eq_ι (t : Fork f g) : t.π.app zero = t.ι :=
rfl
#align category_theory.limits.fork.app_zero_eq_ι CategoryTheory.Limits.Fork.app_zero_eq_ι
/-- A cofork `t` on the parallelPair `f g : X ⟶ Y` consists of two morphisms
`t.ι.app zero : X ⟶ t.pt` and `t.ι.app one : Y ⟶ t.pt`. Of these, only the second one is
interesting, and we give it the shorter name `Cofork.π t`. -/
def Cofork.π (t : Cofork f g) :=
t.ι.app one
#align category_theory.limits.cofork.π CategoryTheory.Limits.Cofork.π
@[simp]
theorem Cofork.app_one_eq_π (t : Cofork f g) : t.ι.app one = t.π :=
rfl
#align category_theory.limits.cofork.app_one_eq_π CategoryTheory.Limits.Cofork.app_one_eq_π
@[simp]
theorem Fork.app_one_eq_ι_comp_left (s : Fork f g) : s.π.app one = s.ι ≫ f := by
rw [← s.app_zero_eq_ι, ← s.w left, parallelPair_map_left]
#align category_theory.limits.fork.app_one_eq_ι_comp_left CategoryTheory.Limits.Fork.app_one_eq_ι_comp_left
@[reassoc]
theorem Fork.app_one_eq_ι_comp_right (s : Fork f g) : s.π.app one = s.ι ≫ g := by
rw [← s.app_zero_eq_ι, ← s.w right, parallelPair_map_right]
#align category_theory.limits.fork.app_one_eq_ι_comp_right CategoryTheory.Limits.Fork.app_one_eq_ι_comp_right
@[simp]
theorem Cofork.app_zero_eq_comp_π_left (s : Cofork f g) : s.ι.app zero = f ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w left, parallelPair_map_left]
#align category_theory.limits.cofork.app_zero_eq_comp_π_left CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_left
@[reassoc]
theorem Cofork.app_zero_eq_comp_π_right (s : Cofork f g) : s.ι.app zero = g ≫ s.π := by
rw [← s.app_one_eq_π, ← s.w right, parallelPair_map_right]
#align category_theory.limits.cofork.app_zero_eq_comp_π_right CategoryTheory.Limits.Cofork.app_zero_eq_comp_π_right
/-- A fork on `f g : X ⟶ Y` is determined by the morphism `ι : P ⟶ X` satisfying `ι ≫ f = ι ≫ g`.
-/
@[simps]
def Fork.ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : Fork f g where
pt := P
π :=
{ app := fun X => by cases X; exact ι; exact ι ≫ f
naturality := fun {X} {Y} f =>
by cases X <;> cases Y <;> cases f <;> dsimp <;> simp; assumption }
#align category_theory.limits.fork.of_ι CategoryTheory.Limits.Fork.ofι
/-- A cofork on `f g : X ⟶ Y` is determined by the morphism `π : Y ⟶ P` satisfying
`f ≫ π = g ≫ π`. -/
@[simps]
def Cofork.ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : Cofork f g where
pt := P
ι :=
{ app := fun X => WalkingParallelPair.casesOn X (f ≫ π) π
naturality := fun i j f => by cases f <;> dsimp <;> simp [w] }
#align category_theory.limits.cofork.of_π CategoryTheory.Limits.Cofork.ofπ
-- See note [dsimp, simp]
@[simp]
theorem Fork.ι_ofι {P : C} (ι : P ⟶ X) (w : ι ≫ f = ι ≫ g) : (Fork.ofι ι w).ι = ι :=
rfl
#align category_theory.limits.fork.ι_of_ι CategoryTheory.Limits.Fork.ι_ofι
@[simp]
theorem Cofork.π_ofπ {P : C} (π : Y ⟶ P) (w : f ≫ π = g ≫ π) : (Cofork.ofπ π w).π = π :=
rfl
#align category_theory.limits.cofork.π_of_π CategoryTheory.Limits.Cofork.π_ofπ
@[reassoc (attr := simp)]
theorem Fork.condition (t : Fork f g) : t.ι ≫ f = t.ι ≫ g := by
rw [← t.app_one_eq_ι_comp_left, ← t.app_one_eq_ι_comp_right]
#align category_theory.limits.fork.condition CategoryTheory.Limits.Fork.condition
@[reassoc (attr := simp)]
theorem Cofork.condition (t : Cofork f g) : f ≫ t.π = g ≫ t.π := by
rw [← t.app_zero_eq_comp_π_left, ← t.app_zero_eq_comp_π_right]
#align category_theory.limits.cofork.condition CategoryTheory.Limits.Cofork.condition
/-- To check whether two maps are equalized by both maps of a fork, it suffices to check it for the
first map -/
theorem Fork.equalizer_ext (s : Fork f g) {W : C} {k l : W ⟶ s.pt} (h : k ≫ s.ι = l ≫ s.ι) :
∀ j : WalkingParallelPair, k ≫ s.π.app j = l ≫ s.π.app j
| zero => h
| one => by
have : k ≫ ι s ≫ f = l ≫ ι s ≫ f := by
simp only [← Category.assoc]; exact congrArg (· ≫ f) h
rw [s.app_one_eq_ι_comp_left, this]
#align category_theory.limits.fork.equalizer_ext CategoryTheory.Limits.Fork.equalizer_ext
/-- To check whether two maps are coequalized by both maps of a cofork, it suffices to check it for
the second map -/
theorem Cofork.coequalizer_ext (s : Cofork f g) {W : C} {k l : s.pt ⟶ W}
(h : Cofork.π s ≫ k = Cofork.π s ≫ l) : ∀ j : WalkingParallelPair, s.ι.app j ≫ k = s.ι.app j ≫ l
| zero => by simp only [s.app_zero_eq_comp_π_left, Category.assoc, h]
| one => h
#align category_theory.limits.cofork.coequalizer_ext CategoryTheory.Limits.Cofork.coequalizer_ext
theorem Fork.IsLimit.hom_ext {s : Fork f g} (hs : IsLimit s) {W : C} {k l : W ⟶ s.pt}
(h : k ≫ Fork.ι s = l ≫ Fork.ι s) : k = l :=
hs.hom_ext <| Fork.equalizer_ext _ h
#align category_theory.limits.fork.is_limit.hom_ext CategoryTheory.Limits.Fork.IsLimit.hom_ext
theorem Cofork.IsColimit.hom_ext {s : Cofork f g} (hs : IsColimit s) {W : C} {k l : s.pt ⟶ W}
(h : Cofork.π s ≫ k = Cofork.π s ≫ l) : k = l :=
hs.hom_ext <| Cofork.coequalizer_ext _ h
#align category_theory.limits.cofork.is_colimit.hom_ext CategoryTheory.Limits.Cofork.IsColimit.hom_ext
@[reassoc (attr := simp)]
theorem Fork.IsLimit.lift_ι {s t : Fork f g} (hs : IsLimit s) : hs.lift t ≫ s.ι = t.ι :=
hs.fac _ _
#align category_theory.limits.fork.is_limit.lift_ι CategoryTheory.Limits.Fork.IsLimit.lift_ι
@[reassoc (attr := simp)]
theorem Cofork.IsColimit.π_desc {s t : Cofork f g} (hs : IsColimit s) : s.π ≫ hs.desc t = t.π :=
hs.fac _ _
#align category_theory.limits.cofork.is_colimit.π_desc CategoryTheory.Limits.Cofork.IsColimit.π_desc
-- porting note: `Fork.IsLimit.lift` was added in order to ease the port
/-- If `s` is a limit fork over `f` and `g`, then a morphism `k : W ⟶ X` satisfying
`k ≫ f = k ≫ g` induces a morphism `l : W ⟶ s.pt` such that `l ≫ fork.ι s = k`. -/
def Fork.IsLimit.lift {s : Fork f g} (hs : IsLimit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) :
W ⟶ s.pt :=
hs.lift (Fork.ofι _ h)
@[reassoc (attr := simp)]
lemma Fork.IsLimit.lift_ι' {s : Fork f g} (hs : IsLimit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) :
Fork.IsLimit.lift hs k h ≫ Fork.ι s = k :=
hs.fac _ _
/-- If `s` is a limit fork over `f` and `g`, then a morphism `k : W ⟶ X` satisfying
`k ≫ f = k ≫ g` induces a morphism `l : W ⟶ s.pt` such that `l ≫ fork.ι s = k`. -/
def Fork.IsLimit.lift' {s : Fork f g} (hs : IsLimit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) :
{ l : W ⟶ s.pt // l ≫ Fork.ι s = k } :=
⟨Fork.IsLimit.lift hs k h, by | simp | /-- If `s` is a limit fork over `f` and `g`, then a morphism `k : W ⟶ X` satisfying
`k ≫ f = k ≫ g` induces a morphism `l : W ⟶ s.pt` such that `l ≫ fork.ι s = k`. -/
def Fork.IsLimit.lift' {s : Fork f g} (hs : IsLimit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) :
{ l : W ⟶ s.pt // l ≫ Fork.ι s = k } :=
⟨Fork.IsLimit.lift hs k h, by | Mathlib.CategoryTheory.Limits.Shapes.Equalizers.451_0.eJEUq2AFfmN187w | /-- If `s` is a limit fork over `f` and `g`, then a morphism `k : W ⟶ X` satisfying
`k ≫ f = k ≫ g` induces a morphism `l : W ⟶ s.pt` such that `l ≫ fork.ι s = k`. -/
def Fork.IsLimit.lift' {s : Fork f g} (hs : IsLimit s) {W : C} (k : W ⟶ X) (h : k ≫ f = k ≫ g) :
{ l : W ⟶ s.pt // l ≫ Fork.ι s = k } | Mathlib_CategoryTheory_Limits_Shapes_Equalizers |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.