state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ΞΉ : Type u_1 c : ComplexShape ΞΉ T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T β₯€ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟢ Y✝ hβ‚‚ : Y✝ ⟢ Z✝ ⊒ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (h₁ ≫ hβ‚‚) = { obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₁ ≫ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map hβ‚‚
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.Algebra.Homology.HomologicalComplex #align_import algebra.homology.functor from "leanprover-community/mathlib"@"8e25bb6c1645bb80670e13848b79a54aa45cb84f" /-! # Complexes in functor categories We can view a complex valued in a functor category `T β₯€ V` as a functor from `T` to complexes valued in `V`. ## Future work In fact this is an equivalence of categories. -/ universe v u open CategoryTheory open CategoryTheory.Limits namespace HomologicalComplex variable {V : Type u} [Category.{v} V] [HasZeroMorphisms V] variable {ΞΉ : Type*} {c : ComplexShape ΞΉ} /-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by
ext i
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by
Mathlib.Algebra.Homology.Functor.34_0.DFL0Z3rvWsk3pdU
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t
Mathlib_Algebra_Homology_Functor
case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ΞΉ : Type u_1 c : ComplexShape ΞΉ T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T β₯€ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟢ Y✝ hβ‚‚ : Y✝ ⟢ Z✝ i : ΞΉ ⊒ Hom.f ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map (h₁ ≫ hβ‚‚)) i = Hom.f ({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map h₁ ≫ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => (d C i j).app t, map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map hβ‚‚) i
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.Algebra.Homology.HomologicalComplex #align_import algebra.homology.functor from "leanprover-community/mathlib"@"8e25bb6c1645bb80670e13848b79a54aa45cb84f" /-! # Complexes in functor categories We can view a complex valued in a functor category `T β₯€ V` as a functor from `T` to complexes valued in `V`. ## Future work In fact this is an equivalence of categories. -/ universe v u open CategoryTheory open CategoryTheory.Limits namespace HomologicalComplex variable {V : Type u} [Category.{v} V] [HasZeroMorphisms V] variable {ΞΉ : Type*} {c : ComplexShape ΞΉ} /-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i
dsimp
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i
Mathlib.Algebra.Homology.Functor.34_0.DFL0Z3rvWsk3pdU
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t
Mathlib_Algebra_Homology_Functor
case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ΞΉ : Type u_1 c : ComplexShape ΞΉ T : Type u_2 inst✝ : Category.{?u.78, u_2} T C : HomologicalComplex (T β₯€ V) c X✝ Y✝ Z✝ : T h₁ : X✝ ⟢ Y✝ hβ‚‚ : Y✝ ⟢ Z✝ i : ΞΉ ⊒ (X C i).map (h₁ ≫ hβ‚‚) = (X C i).map h₁ ≫ (X C i).map hβ‚‚
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.Algebra.Homology.HomologicalComplex #align_import algebra.homology.functor from "leanprover-community/mathlib"@"8e25bb6c1645bb80670e13848b79a54aa45cb84f" /-! # Complexes in functor categories We can view a complex valued in a functor category `T β₯€ V` as a functor from `T` to complexes valued in `V`. ## Future work In fact this is an equivalence of categories. -/ universe v u open CategoryTheory open CategoryTheory.Limits namespace HomologicalComplex variable {V : Type u} [Category.{v} V] [HasZeroMorphisms V] variable {ΞΉ : Type*} {c : ComplexShape ΞΉ} /-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i dsimp
rw [Functor.map_comp]
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i dsimp
Mathlib.Algebra.Homology.Functor.34_0.DFL0Z3rvWsk3pdU
/-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t
Mathlib_Algebra_Homology_Functor
V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ΞΉ : Type u_1 c : ComplexShape ΞΉ T : Type u_2 inst✝ : Category.{?u.4461, u_2} T X✝ Y✝ : HomologicalComplex (T β₯€ V) c f : X✝ ⟢ Y✝ t t' : T g : t ⟢ t' ⊒ ((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => (Hom.f f i).app t) t' = (fun t => Hom.mk fun i => (Hom.f f i).app t) t ≫ ((fun C => asFunctor C) Y✝).map g
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.Algebra.Homology.HomologicalComplex #align_import algebra.homology.functor from "leanprover-community/mathlib"@"8e25bb6c1645bb80670e13848b79a54aa45cb84f" /-! # Complexes in functor categories We can view a complex valued in a functor category `T β₯€ V` as a functor from `T` to complexes valued in `V`. ## Future work In fact this is an equivalence of categories. -/ universe v u open CategoryTheory open CategoryTheory.Limits namespace HomologicalComplex variable {V : Type u} [Category.{v} V] [HasZeroMorphisms V] variable {ΞΉ : Type*} {c : ComplexShape ΞΉ} /-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i dsimp rw [Functor.map_comp] #align homological_complex.as_functor HomologicalComplex.asFunctor -- TODO in fact, this is an equivalence of categories. /-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C := C.asFunctor map f := { app := fun t => { f := fun i => (f.f i).app t comm' := fun i j _ => NatTrans.congr_app (f.comm i j) t } naturality := fun t t' g => by
ext i
/-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C := C.asFunctor map f := { app := fun t => { f := fun i => (f.f i).app t comm' := fun i j _ => NatTrans.congr_app (f.comm i j) t } naturality := fun t t' g => by
Mathlib.Algebra.Homology.Functor.63_0.DFL0Z3rvWsk3pdU
/-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C
Mathlib_Algebra_Homology_Functor
case h V : Type u inst✝² : Category.{v, u} V inst✝¹ : HasZeroMorphisms V ΞΉ : Type u_1 c : ComplexShape ΞΉ T : Type u_2 inst✝ : Category.{?u.4461, u_2} T X✝ Y✝ : HomologicalComplex (T β₯€ V) c f : X✝ ⟢ Y✝ t t' : T g : t ⟢ t' i : ΞΉ ⊒ Hom.f (((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => (Hom.f f i).app t) t') i = Hom.f ((fun t => Hom.mk fun i => (Hom.f f i).app t) t ≫ ((fun C => asFunctor C) Y✝).map g) i
/- Copyright (c) 2021 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin -/ import Mathlib.Algebra.Homology.HomologicalComplex #align_import algebra.homology.functor from "leanprover-community/mathlib"@"8e25bb6c1645bb80670e13848b79a54aa45cb84f" /-! # Complexes in functor categories We can view a complex valued in a functor category `T β₯€ V` as a functor from `T` to complexes valued in `V`. ## Future work In fact this is an equivalence of categories. -/ universe v u open CategoryTheory open CategoryTheory.Limits namespace HomologicalComplex variable {V : Type u} [Category.{v} V] [HasZeroMorphisms V] variable {ΞΉ : Type*} {c : ComplexShape ΞΉ} /-- A complex of functors gives a functor to complexes. -/ @[simps obj map] def asFunctor {T : Type*} [Category T] (C : HomologicalComplex (T β₯€ V) c) : T β₯€ HomologicalComplex V c where obj t := { X := fun i => (C.X i).obj t d := fun i j => (C.d i j).app t d_comp_d' := fun i j k _ _ => by have := C.d_comp_d i j k rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t shape := fun i j h => by have := C.shape _ _ h rw [NatTrans.ext_iff, Function.funext_iff] at this exact this t } map h := { f := fun i => (C.X i).map h comm' := fun i j _ => NatTrans.naturality _ _ } map_id t := by ext i dsimp rw [(C.X i).map_id] map_comp h₁ hβ‚‚ := by ext i dsimp rw [Functor.map_comp] #align homological_complex.as_functor HomologicalComplex.asFunctor -- TODO in fact, this is an equivalence of categories. /-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C := C.asFunctor map f := { app := fun t => { f := fun i => (f.f i).app t comm' := fun i j _ => NatTrans.congr_app (f.comm i j) t } naturality := fun t t' g => by ext i
exact (f.f i).naturality g
/-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C := C.asFunctor map f := { app := fun t => { f := fun i => (f.f i).app t comm' := fun i j _ => NatTrans.congr_app (f.comm i j) t } naturality := fun t t' g => by ext i
Mathlib.Algebra.Homology.Functor.63_0.DFL0Z3rvWsk3pdU
/-- The functorial version of `HomologicalComplex.asFunctor`. -/ @[simps] def complexOfFunctorsToFunctorToComplex {T : Type*} [Category T] : HomologicalComplex (T β₯€ V) c β₯€ T β₯€ HomologicalComplex V c where obj C
Mathlib_Algebra_Homology_Functor
Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by
by_cases ha_zero : a = 0
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : a = 0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β·
simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero]
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β·
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : a = 0 ⊒ limsup (fun x => βŠ₯) f = βŠ₯
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero]
exact limsup_const_bot
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero]
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot
let g := fun x : ℝβ‰₯0∞ => a * x
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x
have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x x : ℝβ‰₯0∞ ⊒ (fun x => a⁻¹ * x) (g x) = x
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by
simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top]
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x x : ℝβ‰₯0∞ ⊒ g ((fun x => a⁻¹ * x) x) = x
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by
simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x hg_bij : Function.Bijective g ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩
have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x hg_bij : Function.Bijective g x✝² x✝¹ : ℝβ‰₯0∞ x✝ : x✝² ≀ x✝¹ ⊒ g x✝² ≀ g x✝¹
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by
rwa [mul_le_mul_left ha_zero ha_top]
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x hg_bij : Function.Bijective g hg_mono : StrictMono g ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1
let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ha_zero : Β¬a = 0 g : ℝβ‰₯0∞ β†’ ℝβ‰₯0∞ := fun x => a * x hg_bij : Function.Bijective g hg_mono : StrictMono g g_iso : ℝβ‰₯0∞ ≃o ℝβ‰₯0∞ := StrictMono.orderIsoOfSurjective g hg_mono (_ : Function.Surjective g) ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2
exact (OrderIso.limsup_apply g_iso).symm
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2
Mathlib.Order.Filter.ENNReal.33_0.m2m9iHbAOFxzXph
theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by
by_cases ha_top : a β‰  ⊀
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a β‰  ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β·
exact limsup_const_mul_of_ne_top ha_top
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β·
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : Β¬a β‰  ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top
push_neg at ha_top
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top
by_cases hu : u =αΆ [f] 0
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : u =αΆ [f] 0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β·
have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β·
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : u =αΆ [f] 0 x : Ξ± hx : u x = OfNat.ofNat 0 x ⊒ (fun x => a * u x) x = OfNat.ofNat 0 x
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by
simp [hx]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : u =αΆ [f] 0 hau : (fun x => a * u x) =αΆ [f] 0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx]
simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx]
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case pos Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : u =αΆ [f] 0 hau : (fun x => a * u x) =αΆ [f] 0 ⊒ βŠ₯ = a * βŠ₯
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot]
simp
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot]
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : Β¬u =αΆ [f] 0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β·
have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β·
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : Β¬u =αΆ [f] 0 ⊒ βˆƒαΆ  (x : Ξ±) in f, ⊀ ≀ if u x = 0 then 0 else ⊀
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by
rw [EventuallyEq, not_eventually] at hu
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : βˆƒαΆ  (x : Ξ±) in f, Β¬u x = OfNat.ofNat 0 x ⊒ βˆƒαΆ  (x : Ξ±) in f, ⊀ ≀ if u x = 0 then 0 else ⊀
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu
refine' hu.mono fun x hx => _
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : βˆƒαΆ  (x : Ξ±) in f, Β¬u x = OfNat.ofNat 0 x x : Ξ± hx : Β¬u x = OfNat.ofNat 0 x ⊒ ⊀ ≀ if u x = 0 then 0 else ⊀
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _
rw [Pi.zero_apply] at hx
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : βˆƒαΆ  (x : Ξ±) in f, Β¬u x = OfNat.ofNat 0 x x : Ξ± hx : Β¬u x = 0 ⊒ ⊀ ≀ if u x = 0 then 0 else ⊀
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx
simp [hx]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : Β¬u =αΆ [f] 0 hu_mul : βˆƒαΆ  (x : Ξ±) in f, ⊀ ≀ if u x = 0 then 0 else ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx]
have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul)
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx]
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : Β¬u =αΆ [f] 0 hu_mul : βˆƒαΆ  (x : Ξ±) in f, ⊀ ≀ if u x = 0 then 0 else ⊀ h_top_le : limsup (fun x => if u x = 0 then 0 else ⊀) f = ⊀ ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul)
have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul)
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
case neg Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u : Ξ± β†’ ℝβ‰₯0∞ a : ℝβ‰₯0∞ ha_top : a = ⊀ hu : Β¬u =αΆ [f] 0 hu_mul : βˆƒαΆ  (x : Ξ±) in f, ⊀ ≀ if u x = 0 then 0 else ⊀ h_top_le : limsup (fun x => if u x = 0 then 0 else ⊀) f = ⊀ hfu : limsup u f β‰  0 ⊒ limsup (fun x => a * u x) f = a * limsup u f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu
simp only [ha_top, top_mul', h_top_le, hfu, ite_false]
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu
Mathlib.Order.Filter.ENNReal.50_0.m2m9iHbAOFxzXph
theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u v : Ξ± β†’ ℝβ‰₯0∞ ⊒ limsup (u * v) f ≀ limsup (fun x => limsup u f * v x) f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu simp only [ha_top, top_mul', h_top_le, hfu, ite_false] #align ennreal.limsup_const_mul ENNReal.limsup_const_mul theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by
refine limsup_le_limsup ?_
theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by
Mathlib.Order.Filter.ENNReal.71_0.m2m9iHbAOFxzXph
theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f : Filter Ξ± inst✝ : CountableInterFilter f u v : Ξ± β†’ ℝβ‰₯0∞ ⊒ u * v ≀ᢠ[f] fun x => limsup u f * v x
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu simp only [ha_top, top_mul', h_top_le, hfu, ite_false] #align ennreal.limsup_const_mul ENNReal.limsup_const_mul theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by refine limsup_le_limsup ?_
filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl
theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by refine limsup_le_limsup ?_
Mathlib.Order.Filter.ENNReal.71_0.m2m9iHbAOFxzXph
theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f✝ : Filter Ξ± Ξ² : Type u_2 inst✝¹ : Countable Ξ² f : Filter Ξ± inst✝ : CountableInterFilter f g : Filter Ξ² u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞ ⊒ βˆ€αΆ  (a : Ξ±) in f, βˆ€ (b : Ξ²), u a b ≀ limsup (fun a' => u a' b) f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu simp only [ha_top, top_mul', h_top_le, hfu, ite_false] #align ennreal.limsup_const_mul ENNReal.limsup_const_mul theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by refine limsup_le_limsup ?_ filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl _ = f.limsup u * f.limsup v := limsup_const_mul #align ennreal.limsup_mul_le ENNReal.limsup_mul_le theorem limsup_add_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u + v) ≀ f.limsup u + f.limsup v := sInf_le ((eventually_le_limsup u).mp ((eventually_le_limsup v).mono fun _ hxg hxf => add_le_add hxf hxg)) #align ennreal.limsup_add_le ENNReal.limsup_add_le theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b := have h1 : βˆ€αΆ  a in f, βˆ€ b, u a b ≀ f.limsup fun a' => u a' b := by
rw [eventually_countable_forall]
theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b := have h1 : βˆ€αΆ  a in f, βˆ€ b, u a b ≀ f.limsup fun a' => u a' b := by
Mathlib.Order.Filter.ENNReal.86_0.m2m9iHbAOFxzXph
theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b
Mathlib_Order_Filter_ENNReal
Ξ± : Type u_1 f✝ : Filter Ξ± Ξ² : Type u_2 inst✝¹ : Countable Ξ² f : Filter Ξ± inst✝ : CountableInterFilter f g : Filter Ξ² u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞ ⊒ βˆ€ (i : Ξ²), βˆ€αΆ  (x : Ξ±) in f, u x i ≀ limsup (fun a' => u a' i) f
/- Copyright (c) 2021 RΓ©my Degenne. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: RΓ©my Degenne -/ import Mathlib.Topology.Instances.ENNReal #align_import order.filter.ennreal from "leanprover-community/mathlib"@"52932b3a083d4142e78a15dc928084a22fea9ba0" /-! # Order properties of extended non-negative reals This file compiles filter-related results about `ℝβ‰₯0∞` (see Data/Real/ENNReal.lean). -/ open Filter ENNReal namespace ENNReal variable {Ξ± : Type*} {f : Filter Ξ±} theorem eventually_le_limsup [CountableInterFilter f] (u : Ξ± β†’ ℝβ‰₯0∞) : βˆ€αΆ  y in f, u y ≀ f.limsup u := _root_.eventually_le_limsup #align ennreal.eventually_le_limsup ENNReal.eventually_le_limsup theorem limsup_eq_zero_iff [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} : f.limsup u = 0 ↔ u =αΆ [f] 0 := limsup_eq_bot #align ennreal.limsup_eq_zero_iff ENNReal.limsup_eq_zero_iff theorem limsup_const_mul_of_ne_top {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} (ha_top : a β‰  ⊀) : (f.limsup fun x : Ξ± => a * u x) = a * f.limsup u := by by_cases ha_zero : a = 0 Β· simp_rw [ha_zero, zero_mul, ← ENNReal.bot_eq_zero] exact limsup_const_bot let g := fun x : ℝβ‰₯0∞ => a * x have hg_bij : Function.Bijective g := Function.bijective_iff_has_inverse.mpr ⟨fun x => a⁻¹ * x, ⟨fun x => by simp [← mul_assoc, ENNReal.inv_mul_cancel ha_zero ha_top], fun x => by simp [← mul_assoc, ENNReal.mul_inv_cancel ha_zero ha_top]⟩⟩ have hg_mono : StrictMono g := Monotone.strictMono_of_injective (fun _ _ _ => by rwa [mul_le_mul_left ha_zero ha_top]) hg_bij.1 let g_iso := StrictMono.orderIsoOfSurjective g hg_mono hg_bij.2 exact (OrderIso.limsup_apply g_iso).symm #align ennreal.limsup_const_mul_of_ne_top ENNReal.limsup_const_mul_of_ne_top theorem limsup_const_mul [CountableInterFilter f] {u : Ξ± β†’ ℝβ‰₯0∞} {a : ℝβ‰₯0∞} : f.limsup (a * u Β·) = a * f.limsup u := by by_cases ha_top : a β‰  ⊀ Β· exact limsup_const_mul_of_ne_top ha_top push_neg at ha_top by_cases hu : u =αΆ [f] 0 Β· have hau : (a * u Β·) =αΆ [f] 0 := hu.mono fun x hx => by simp [hx] simp only [limsup_congr hu, limsup_congr hau, Pi.zero_apply, ← ENNReal.bot_eq_zero, limsup_const_bot] simp Β· have hu_mul : βˆƒαΆ  x : Ξ± in f, ⊀ ≀ ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀ := by rw [EventuallyEq, not_eventually] at hu refine' hu.mono fun x hx => _ rw [Pi.zero_apply] at hx simp [hx] have h_top_le : (f.limsup fun x : Ξ± => ite (u x = 0) (0 : ℝβ‰₯0∞) ⊀) = ⊀ := eq_top_iff.mpr (le_limsup_of_frequently_le hu_mul) have hfu : f.limsup u β‰  0 := mt limsup_eq_zero_iff.1 hu simp only [ha_top, top_mul', h_top_le, hfu, ite_false] #align ennreal.limsup_const_mul ENNReal.limsup_const_mul theorem limsup_mul_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u * v) ≀ f.limsup u * f.limsup v := calc f.limsup (u * v) ≀ f.limsup fun x => f.limsup u * v x := by refine limsup_le_limsup ?_ filter_upwards [@eventually_le_limsup _ f _ u] with x hx using mul_le_mul' hx le_rfl _ = f.limsup u * f.limsup v := limsup_const_mul #align ennreal.limsup_mul_le ENNReal.limsup_mul_le theorem limsup_add_le [CountableInterFilter f] (u v : Ξ± β†’ ℝβ‰₯0∞) : f.limsup (u + v) ≀ f.limsup u + f.limsup v := sInf_le ((eventually_le_limsup u).mp ((eventually_le_limsup v).mono fun _ hxg hxf => add_le_add hxf hxg)) #align ennreal.limsup_add_le ENNReal.limsup_add_le theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b := have h1 : βˆ€αΆ  a in f, βˆ€ b, u a b ≀ f.limsup fun a' => u a' b := by rw [eventually_countable_forall]
exact fun b => ENNReal.eventually_le_limsup fun a => u a b
theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b := have h1 : βˆ€αΆ  a in f, βˆ€ b, u a b ≀ f.limsup fun a' => u a' b := by rw [eventually_countable_forall]
Mathlib.Order.Filter.ENNReal.86_0.m2m9iHbAOFxzXph
theorem limsup_liminf_le_liminf_limsup {Ξ²} [Countable Ξ²] {f : Filter Ξ±} [CountableInterFilter f] {g : Filter Ξ²} (u : Ξ± β†’ Ξ² β†’ ℝβ‰₯0∞) : (f.limsup fun a : Ξ± => g.liminf fun b : Ξ² => u a b) ≀ g.liminf fun b => f.limsup fun a => u a b
Mathlib_Order_Filter_ENNReal
u : β„‚ hu : 0 < u.re v : β„‚ ⊒ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 (1 / 2)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by
apply IntervalIntegrable.mul_continuousOn
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hf u : β„‚ hu : 0 < u.re v : β„‚ ⊒ IntervalIntegrable (fun x => ↑x ^ (u - 1)) volume 0 (1 / 2)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β·
refine' intervalIntegral.intervalIntegrable_cpow' _
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hf u : β„‚ hu : 0 < u.re v : β„‚ ⊒ -1 < (u - 1).re
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _
rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right]
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg u : β„‚ hu : 0 < u.re v : β„‚ ⊒ ContinuousOn (fun x => (1 - ↑x) ^ (v - 1)) (uIcc 0 (1 / 2))
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β·
apply ContinuousAt.continuousOn
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont u : β„‚ hu : 0 < u.re v : β„‚ ⊒ βˆ€ x ∈ uIcc 0 (1 / 2), ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn
intro x hx
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ uIcc 0 (1 / 2) ⊒ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx
rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ uIcc 0 (1 / 2) ⊒ 0 ≀ 1 / 2
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by
positivity
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ ContinuousAt (fun x => (1 - ↑x) ^ (v - 1)) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx
apply ContinuousAt.cpow
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont.hf u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ ContinuousAt (fun x => 1 - ↑x) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β·
exact (continuous_const.sub continuous_ofReal).continuousAt
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont.hg u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ ContinuousAt (fun x => v - 1) x
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β·
exact continuousAt_const
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont.h0 u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ 0 < (1 - ↑x).re ∨ (1 - ↑x).im β‰  0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β·
rw [sub_re, one_re, ofReal_re, sub_pos]
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case hg.hcont.h0 u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ x < 1 ∨ (1 - ↑x).im β‰  0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos]
exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1))
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re v : β„‚ x : ℝ hx : x ∈ Icc 0 (1 / 2) ⊒ 1 / 2 < 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by
norm_num
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.61_0.in2QiCFW52coQT2
/-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2)
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume 0 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by
refine' (betaIntegral_convergent_left hu v).trans _
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ IntervalIntegrable (fun x => ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)) volume (1 / 2) 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _
rw [IntervalIntegrable.iff_comp_neg]
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ IntervalIntegrable (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) volume (-(1 / 2)) (-1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg]
convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3 u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ (fun x => ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)) = fun x => ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β·
ext1 x
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x
conv_lhs => rw [mul_comm]
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
rw [mul_comm]
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
rw [mul_comm]
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ | ↑(-x) ^ (u - 1) * (1 - ↑(-x)) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
rw [mul_comm]
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ (1 - ↑(-x)) ^ (v - 1) * ↑(-x) ^ (u - 1) = ↑(x + 1) ^ (v - 1) * (1 - ↑(x + 1)) ^ (u - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm]
congr 2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h.e_a.e_a u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ 1 - ↑(-x) = ↑(x + 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β·
push_cast
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h.e_a.e_a u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ 1 - -↑x = ↑x + 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast;
ring
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast;
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h.e_a.e_a u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ ↑(-x) = 1 - ↑(x + 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β·
push_cast
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_3.h.e_a.e_a u v : β„‚ hu : 0 < u.re hv : 0 < v.re x : ℝ ⊒ -↑x = 1 - (↑x + 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast;
ring
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast;
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_5 u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ -(1 / 2) = 1 / 2 - 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β·
norm_num
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h.e'_6 u v : β„‚ hu : 0 < u.re hv : 0 < v.re ⊒ -1 = 0 - 1
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β·
norm_num
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.78_0.in2QiCFW52coQT2
/-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ ⊒ betaIntegral v u = betaIntegral u v
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by
rw [betaIntegral, betaIntegral]
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral]
have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) = (-1)⁻¹ β€’ ∫ (x : ℝ) in -1 * 0 + 1 ..-1 * 1 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1
rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) = ∫ (x : ℝ) in -1 * 1 + 1 ..-1 * 0 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this
simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, ↑(-1 * x + 1) ^ (u - 1) * (1 - ↑(-1 * x + 1)) ^ (v - 1) = ∫ (x : ℝ) in -1 * 1 + 1 ..-1 * 0 + 1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says
simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this
conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
arg 1
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this =>
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) | fun x => (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1;
intro x
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1;
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case h u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) x : ℝ | (-↑x + 1) ^ (u - 1) * ↑x ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x;
rw [add_comm, ← sub_eq_add_neg, mul_comm]
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x;
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u v : β„‚ this : ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1) ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (v - 1) * (1 - ↑x) ^ (u - 1) = ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) * (1 - ↑x) ^ (v - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
exact this
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.92_0.in2QiCFW52coQT2
theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ betaIntegral u 1 = 1 / u
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by
simp_rw [betaIntegral, sub_self, cpow_zero, mul_one]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ ∫ (x : ℝ) in 0 ..1, ↑x ^ (u - 1) = 1 / u
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one]
rw [integral_cpow (Or.inl _)]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ (↑1 ^ (u - 1 + 1) - ↑0 ^ (u - 1 + 1)) / (u - 1 + 1) = 1 / u
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β·
rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ u - 1 + 1 β‰  0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel]
rw [sub_add_cancel]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ u β‰  0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel]
contrapose! hu
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : u = 0 ⊒ u.re ≀ 0
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu;
rw [hu, zero_re]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu;
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
u : β„‚ hu : 0 < u.re ⊒ -1 < (u - 1).re
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β·
rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel]
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.104_0.in2QiCFW52coQT2
theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ⊒ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by
have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne'
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 ⊒ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * betaIntegral s t
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne'
rw [betaIntegral]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne'
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 ⊒ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral]
have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 ⊒ ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1))
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by
rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 ⊒ s + t - 1 = 1 + (s - 1) + (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by
abel
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 ⊒ s + t - 1 = 1 + (s - 1) + (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by
abel
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊒ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s + t - 1) * ∫ (x : ℝ) in 0 ..1, ↑x ^ (s - 1) * (1 - ↑x) ^ (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊒ ∫ (x : ℝ) in 0 ..a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ∫ (x : ℝ) in 0 ..a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1))
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div]
simp_rw [intervalIntegral.integral_of_le ha.le]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) ⊒ ∫ (x : ℝ) in Ioc 0 a, ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) βˆ‚volume = ∫ (x : ℝ) in Ioc 0 a, ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1)) βˆ‚volume
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le]
refine' set_integral_congr measurableSet_Ioc fun x hx => _
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑a ^ (t - 1) * (↑(x / a) ^ (s - 1) * (1 - ↑(x / a)) ^ (t - 1))
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _
rw [mul_mul_mul_comm]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ ↑x ^ (s - 1) * (↑a - ↑x) ^ (t - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1) * (↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1))
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm]
congr 1
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case e_a s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ ↑x ^ (s - 1) = ↑a ^ (s - 1) * ↑(x / a) ^ (s - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β·
rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha']
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case e_a s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ (↑a - ↑x) ^ (t - 1) = ↑a ^ (t - 1) * (1 - ↑(x / a)) ^ (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β·
rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)]
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β·
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ 1 - ↑(x / a) = ↑(1 - x / a)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by
norm_cast
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case e_a s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ (↑a - ↑x) ^ (t - 1) = (↑a * ↑(1 - x / a)) ^ (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)]
push_cast
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)]
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
case e_a s t : β„‚ a : ℝ ha : 0 < a ha' : ↑a β‰  0 A : ↑a ^ (s + t - 1) = ↑a * (↑a ^ (s - 1) * ↑a ^ (t - 1)) x : ℝ hx : x ∈ Ioc 0 a ⊒ (↑a - ↑x) ^ (t - 1) = (↑a * (1 - ↑x / ↑a)) ^ (t - 1)
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)] push_cast
rw [mul_sub, mul_one, mul_div_cancel' _ ha']
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)] push_cast
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.113_0.in2QiCFW52coQT2
theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta
s t : β„‚ hs : 0 < s.re ht : 0 < t.re ⊒ Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
/- Copyright (c) 2023 David Loeffler. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: David Loeffler -/ import Mathlib.Analysis.Convolution import Mathlib.Analysis.SpecialFunctions.Trigonometric.EulerSineProd import Mathlib.Analysis.SpecialFunctions.Gamma.BohrMollerup import Mathlib.Analysis.Analytic.IsolatedZeros #align_import analysis.special_functions.gamma.beta from "leanprover-community/mathlib"@"a3209ddf94136d36e5e5c624b10b2a347cc9d090" /-! # The Beta function, and further properties of the Gamma function In this file we define the Beta integral, relate Beta and Gamma functions, and prove some refined properties of the Gamma function using these relations. ## Results on the Beta function * `Complex.betaIntegral`: the Beta function `Ξ’(u, v)`, where `u`, `v` are complex with positive real part. * `Complex.Gamma_mul_Gamma_eq_betaIntegral`: the formula `Gamma u * Gamma v = Gamma (u + v) * betaIntegral u v`. ## Results on the Gamma function * `Complex.Gamma_ne_zero`: for all `s : β„‚` with `s βˆ‰ {-n : n ∈ β„•}` we have `Ξ“ s β‰  0`. * `Complex.GammaSeq_tendsto_Gamma`: for all `s`, the limit as `n β†’ ∞` of the sequence `n ↦ n ^ s * n! / (s * (s + 1) * ... * (s + n))` is `Ξ“(s)`. * `Complex.Gamma_mul_Gamma_one_sub`: Euler's reflection formula `Gamma s * Gamma (1 - s) = Ο€ / sin Ο€ s`. * `Complex.differentiable_one_div_Gamma`: the function `1 / Ξ“(s)` is differentiable everywhere. * `Complex.Gamma_mul_Gamma_add_half`: Legendre's duplication formula `Gamma s * Gamma (s + 1 / 2) = Gamma (2 * s) * 2 ^ (1 - 2 * s) * sqrt Ο€`. * `Real.Gamma_ne_zero`, `Real.GammaSeq_tendsto_Gamma`, `Real.Gamma_mul_Gamma_one_sub`, `Real.Gamma_mul_Gamma_add_half`: real versions of the above. -/ noncomputable section set_option linter.uppercaseLean3 false open Filter intervalIntegral Set Real MeasureTheory open scoped Nat Topology BigOperators Real section BetaIntegral /-! ## The Beta function -/ namespace Complex /-- The Beta function `Ξ’ (u, v)`, defined as `∫ x:ℝ in 0..1, x ^ (u - 1) * (1 - x) ^ (v - 1)`. -/ noncomputable def betaIntegral (u v : β„‚) : β„‚ := ∫ x : ℝ in (0)..1, (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) #align complex.beta_integral Complex.betaIntegral /-- Auxiliary lemma for `betaIntegral_convergent`, showing convergence at the left endpoint. -/ theorem betaIntegral_convergent_left {u : β„‚} (hu : 0 < re u) (v : β„‚) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 (1 / 2) := by apply IntervalIntegrable.mul_continuousOn Β· refine' intervalIntegral.intervalIntegrable_cpow' _ rwa [sub_re, one_re, ← zero_sub, sub_lt_sub_iff_right] Β· apply ContinuousAt.continuousOn intro x hx rw [uIcc_of_le (by positivity : (0 : ℝ) ≀ 1 / 2)] at hx apply ContinuousAt.cpow Β· exact (continuous_const.sub continuous_ofReal).continuousAt Β· exact continuousAt_const Β· rw [sub_re, one_re, ofReal_re, sub_pos] exact Or.inl (hx.2.trans_lt (by norm_num : (1 / 2 : ℝ) < 1)) #align complex.beta_integral_convergent_left Complex.betaIntegral_convergent_left /-- The Beta integral is convergent for all `u, v` of positive real part. -/ theorem betaIntegral_convergent {u v : β„‚} (hu : 0 < re u) (hv : 0 < re v) : IntervalIntegrable (fun x => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1) : ℝ β†’ β„‚) volume 0 1 := by refine' (betaIntegral_convergent_left hu v).trans _ rw [IntervalIntegrable.iff_comp_neg] convert ((betaIntegral_convergent_left hv u).comp_add_right 1).symm using 1 Β· ext1 x conv_lhs => rw [mul_comm] congr 2 <;> Β· push_cast; ring Β· norm_num Β· norm_num #align complex.beta_integral_convergent Complex.betaIntegral_convergent theorem betaIntegral_symm (u v : β„‚) : betaIntegral v u = betaIntegral u v := by rw [betaIntegral, betaIntegral] have := intervalIntegral.integral_comp_mul_add (a := 0) (b := 1) (c := -1) (fun x : ℝ => (x : β„‚) ^ (u - 1) * (1 - (x : β„‚)) ^ (v - 1)) neg_one_lt_zero.ne 1 rw [inv_neg, inv_one, neg_one_smul, ← intervalIntegral.integral_symm] at this simp? at this says simp only [neg_mul, one_mul, ofReal_add, ofReal_neg, ofReal_one, sub_add_cancel'', neg_neg, mul_one, add_left_neg, mul_zero, zero_add] at this conv_lhs at this => arg 1; intro x; rw [add_comm, ← sub_eq_add_neg, mul_comm] exact this #align complex.beta_integral_symm Complex.betaIntegral_symm theorem betaIntegral_eval_one_right {u : β„‚} (hu : 0 < re u) : betaIntegral u 1 = 1 / u := by simp_rw [betaIntegral, sub_self, cpow_zero, mul_one] rw [integral_cpow (Or.inl _)] Β· rw [ofReal_zero, ofReal_one, one_cpow, zero_cpow, sub_zero, sub_add_cancel] rw [sub_add_cancel] contrapose! hu; rw [hu, zero_re] Β· rwa [sub_re, one_re, ← sub_pos, sub_neg_eq_add, sub_add_cancel] #align complex.beta_integral_eval_one_right Complex.betaIntegral_eval_one_right theorem betaIntegral_scaled (s t : β„‚) {a : ℝ} (ha : 0 < a) : ∫ x in (0)..a, (x : β„‚) ^ (s - 1) * ((a : β„‚) - x) ^ (t - 1) = (a : β„‚) ^ (s + t - 1) * betaIntegral s t := by have ha' : (a : β„‚) β‰  0 := ofReal_ne_zero.mpr ha.ne' rw [betaIntegral] have A : (a : β„‚) ^ (s + t - 1) = a * ((a : β„‚) ^ (s - 1) * (a : β„‚) ^ (t - 1)) := by rw [(by abel : s + t - 1 = 1 + (s - 1) + (t - 1)), cpow_add _ _ ha', cpow_add 1 _ ha', cpow_one, mul_assoc] rw [A, mul_assoc, ← intervalIntegral.integral_const_mul, ← real_smul, ← zero_div a, ← div_self ha.ne', ← intervalIntegral.integral_comp_div _ ha.ne', zero_div] simp_rw [intervalIntegral.integral_of_le ha.le] refine' set_integral_congr measurableSet_Ioc fun x hx => _ rw [mul_mul_mul_comm] congr 1 Β· rw [← mul_cpow_ofReal_nonneg ha.le (div_pos hx.1 ha).le, ofReal_div, mul_div_cancel' _ ha'] Β· rw [(by norm_cast : (1 : β„‚) - ↑(x / a) = ↑(1 - x / a)), ← mul_cpow_ofReal_nonneg ha.le (sub_nonneg.mpr <| (div_le_one ha).mpr hx.2)] push_cast rw [mul_sub, mul_one, mul_div_cancel' _ ha'] #align complex.beta_integral_scaled Complex.betaIntegral_scaled /-- Relation between Beta integral and Gamma function. -/ theorem Gamma_mul_Gamma_eq_betaIntegral {s t : β„‚} (hs : 0 < re s) (ht : 0 < re t) : Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t := by -- Note that we haven't proved (yet) that the Gamma function has no zeroes, so we can't formulate -- this as a formula for the Beta function.
have conv_int := integral_posConvolution (GammaIntegral_convergent hs) (GammaIntegral_convergent ht) (ContinuousLinearMap.mul ℝ β„‚)
/-- Relation between Beta integral and Gamma function. -/ theorem Gamma_mul_Gamma_eq_betaIntegral {s t : β„‚} (hs : 0 < re s) (ht : 0 < re t) : Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t := by -- Note that we haven't proved (yet) that the Gamma function has no zeroes, so we can't formulate -- this as a formula for the Beta function.
Mathlib.Analysis.SpecialFunctions.Gamma.Beta.134_0.in2QiCFW52coQT2
/-- Relation between Beta integral and Gamma function. -/ theorem Gamma_mul_Gamma_eq_betaIntegral {s t : β„‚} (hs : 0 < re s) (ht : 0 < re t) : Gamma s * Gamma t = Gamma (s + t) * betaIntegral s t
Mathlib_Analysis_SpecialFunctions_Gamma_Beta