state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x < 0 ⊢ b ^ logb b x = -x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by
rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)]
theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.146_0.egNyp4fdqSCAE7f
theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 hx : x < 0 ⊢ |x| = -x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)]
exact abs_of_neg hx
theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)]
Mathlib.Analysis.SpecialFunctions.Log.Base.146_0.egNyp4fdqSCAE7f
theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 ⊢ SurjOn (logb b) (Iio 0) univ
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by
intro x _
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ x ∈ logb b '' Iio 0
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _
use -b ^ x
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ -b ^ x ∈ Iio 0 ∧ logb b (-b ^ x) = x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x
constructor
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
case h.left b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ -b ^ x ∈ Iio 0
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor ·
simp only [Right.neg_neg_iff, Set.mem_Iio]
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor ·
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
case h.left b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ 0 < b ^ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio]
apply rpow_pos_of_pos b_pos
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio]
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
case h.right b x✝ y : ℝ b_pos : 0 < b b_ne_one : b ≠ 1 x : ℝ a✝ : x ∈ univ ⊢ logb b (-b ^ x) = x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos ·
rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one]
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos ·
Mathlib.Analysis.SpecialFunctions.Log.Base.163_0.egNyp4fdqSCAE7f
theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b ⊢ 0 < b
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by
linarith
private theorem b_pos : 0 < b := by
Mathlib.Analysis.SpecialFunctions.Log.Base.178_0.egNyp4fdqSCAE7f
private theorem b_pos : 0 < b
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b ⊢ b ≠ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by
linarith
private theorem b_ne_one' : b ≠ 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.181_0.egNyp4fdqSCAE7f
private theorem b_ne_one' : b ≠ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b h : 0 < x h₁ : 0 < y ⊢ logb b x ≤ logb b y ↔ x ≤ y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by
rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁]
@[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.183_0.egNyp4fdqSCAE7f
@[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b h : 0 < x hxy : x ≤ y ⊢ 0 < y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by
linarith
@[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by
Mathlib.Analysis.SpecialFunctions.Log.Base.188_0.egNyp4fdqSCAE7f
@[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x hxy : x < y ⊢ logb b x < logb b y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by
rw [logb, logb, div_lt_div_right (log_pos hb)]
@[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.192_0.egNyp4fdqSCAE7f
@[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x hxy : x < y ⊢ log x < log y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)]
exact log_lt_log hx hxy
@[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)]
Mathlib.Analysis.SpecialFunctions.Log.Base.192_0.egNyp4fdqSCAE7f
@[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x hy : 0 < y ⊢ logb b x < logb b y ↔ x < y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by
rw [logb, logb, div_lt_div_right (log_pos hb)]
@[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.198_0.egNyp4fdqSCAE7f
@[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x hy : 0 < y ⊢ log x < log y ↔ x < y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)]
exact log_lt_log_iff hx hy
@[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)]
Mathlib.Analysis.SpecialFunctions.Log.Base.198_0.egNyp4fdqSCAE7f
@[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x ≤ y ↔ x ≤ b ^ y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by
rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx]
theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.204_0.egNyp4fdqSCAE7f
theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x < y ↔ x < b ^ y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by
rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx]
theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.208_0.egNyp4fdqSCAE7f
theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hy : 0 < y ⊢ x ≤ logb b y ↔ b ^ x ≤ y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by
rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy]
theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.212_0.egNyp4fdqSCAE7f
theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hy : 0 < y ⊢ x < logb b y ↔ b ^ x < y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by
rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy]
theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by
Mathlib.Analysis.SpecialFunctions.Log.Base.216_0.egNyp4fdqSCAE7f
theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ 0 < logb b x ↔ 1 < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by
rw [← @logb_one b]
theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.220_0.egNyp4fdqSCAE7f
theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b 1 < logb b x ↔ 1 < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b]
rw [logb_lt_logb_iff hb zero_lt_one hx]
theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b]
Mathlib.Analysis.SpecialFunctions.Log.Base.220_0.egNyp4fdqSCAE7f
theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 1 < x ⊢ 0 < logb b x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by
rw [logb_pos_iff hb (lt_trans zero_lt_one hx)]
theorem logb_pos (hx : 1 < x) : 0 < logb b x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.225_0.egNyp4fdqSCAE7f
theorem logb_pos (hx : 1 < x) : 0 < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 1 < x ⊢ 1 < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)]
exact hx
theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)]
Mathlib.Analysis.SpecialFunctions.Log.Base.225_0.egNyp4fdqSCAE7f
theorem logb_pos (hx : 1 < x) : 0 < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b h : 0 < x ⊢ logb b x < 0 ↔ x < 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by
rw [← logb_one]
theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.230_0.egNyp4fdqSCAE7f
theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b h : 0 < x ⊢ logb b x < logb ?m.52635 1 ↔ x < 1 b x y : ℝ hb : 1 < b h : 0 < x ⊢ ℝ
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one]
exact logb_lt_logb_iff hb h zero_lt_one
theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one]
Mathlib.Analysis.SpecialFunctions.Log.Base.230_0.egNyp4fdqSCAE7f
theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ 0 ≤ logb b x ↔ 1 ≤ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by
rw [← not_lt, logb_neg_iff hb hx, not_lt]
theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.239_0.egNyp4fdqSCAE7f
theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 < x ⊢ logb b x ≤ 0 ↔ x ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by
rw [← not_lt, logb_pos_iff hb hx, not_lt]
theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.247_0.egNyp4fdqSCAE7f
theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b hx : 0 ≤ x ⊢ logb b x ≤ 0 ↔ x ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by
rcases hx.eq_or_lt with (rfl | hx)
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.251_0.egNyp4fdqSCAE7f
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
case inl b y : ℝ hb : 1 < b hx : 0 ≤ 0 ⊢ logb b 0 ≤ 0 ↔ 0 ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) ·
simp [le_refl, zero_le_one]
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) ·
Mathlib.Analysis.SpecialFunctions.Log.Base.251_0.egNyp4fdqSCAE7f
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr b x y : ℝ hb : 1 < b hx✝ : 0 ≤ x hx : 0 < x ⊢ logb b x ≤ 0 ↔ x ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one]
exact logb_nonpos_iff hb hx
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one]
Mathlib.Analysis.SpecialFunctions.Log.Base.251_0.egNyp4fdqSCAE7f
theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ hb : 1 < b ⊢ StrictAntiOn (logb b) (Iio 0)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by
rintro x (hx : x < 0) y (hy : y < 0) hxy
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by
Mathlib.Analysis.SpecialFunctions.Log.Base.265_0.egNyp4fdqSCAE7f
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b y < logb b x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy
rw [← logb_abs y, ← logb_abs x]
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy
Mathlib.Analysis.SpecialFunctions.Log.Base.265_0.egNyp4fdqSCAE7f
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b |y| < logb b |x|
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x]
refine' logb_lt_logb hb (abs_pos.2 hy.ne) _
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x]
Mathlib.Analysis.SpecialFunctions.Log.Base.265_0.egNyp4fdqSCAE7f
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ hb : 1 < b x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ |y| < |x|
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _
Mathlib.Analysis.SpecialFunctions.Log.Base.265_0.egNyp4fdqSCAE7f
theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ b ≠ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by
linarith
private theorem b_ne_one : b ≠ 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.294_0.egNyp4fdqSCAE7f
private theorem b_ne_one : b ≠ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 h : 0 < x h₁ : 0 < y ⊢ logb b x ≤ logb b y ↔ y ≤ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by
rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h]
@[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.296_0.egNyp4fdqSCAE7f
@[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hxy : x < y ⊢ logb b y < logb b x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by
rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.301_0.egNyp4fdqSCAE7f
theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hxy : x < y ⊢ log x < log y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
exact log_lt_log hx hxy
theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
Mathlib.Analysis.SpecialFunctions.Log.Base.301_0.egNyp4fdqSCAE7f
theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hy : 0 < y ⊢ logb b x < logb b y ↔ y < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by
rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
@[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.306_0.egNyp4fdqSCAE7f
@[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hy : 0 < y ⊢ log y < log x ↔ y < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
exact log_lt_log_iff hy hx
@[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)]
Mathlib.Analysis.SpecialFunctions.Log.Base.306_0.egNyp4fdqSCAE7f
@[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x ≤ y ↔ b ^ y ≤ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by
rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx]
theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.313_0.egNyp4fdqSCAE7f
theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x < y ↔ b ^ y < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by
rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx]
theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.317_0.egNyp4fdqSCAE7f
theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hy : 0 < y ⊢ x ≤ logb b y ↔ y ≤ b ^ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by
rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy]
theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.321_0.egNyp4fdqSCAE7f
theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hy : 0 < y ⊢ x < logb b y ↔ y < b ^ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by
rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy]
theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.325_0.egNyp4fdqSCAE7f
theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ 0 < logb b x ↔ x < 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by
rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx]
theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.329_0.egNyp4fdqSCAE7f
theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x < 1 ⊢ 0 < logb b x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by
rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx]
theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.333_0.egNyp4fdqSCAE7f
theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x < 1 ⊢ x < 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx]
exact hx'
theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx]
Mathlib.Analysis.SpecialFunctions.Log.Base.333_0.egNyp4fdqSCAE7f
theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 h : 0 < x ⊢ logb b x < 0 ↔ 1 < x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by
rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one]
theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.338_0.egNyp4fdqSCAE7f
theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ 0 ≤ logb b x ↔ x ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by
rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt]
theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.346_0.egNyp4fdqSCAE7f
theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x ≤ 1 ⊢ 0 ≤ logb b x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by
rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx]
theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.350_0.egNyp4fdqSCAE7f
theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x hx' : x ≤ 1 ⊢ x ≤ 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx]
exact hx'
theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx]
Mathlib.Analysis.SpecialFunctions.Log.Base.350_0.egNyp4fdqSCAE7f
theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 hx : 0 < x ⊢ logb b x ≤ 0 ↔ 1 ≤ x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by
rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt]
theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.355_0.egNyp4fdqSCAE7f
theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ StrictMonoOn (logb b) (Iio 0)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by
rintro x (hx : x < 0) y (hy : y < 0) hxy
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by
Mathlib.Analysis.SpecialFunctions.Log.Base.363_0.egNyp4fdqSCAE7f
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b x < logb b y
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy
rw [← logb_abs y, ← logb_abs x]
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy
Mathlib.Analysis.SpecialFunctions.Log.Base.363_0.egNyp4fdqSCAE7f
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ logb b |x| < logb b |y|
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x]
refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x]
Mathlib.Analysis.SpecialFunctions.Log.Base.363_0.egNyp4fdqSCAE7f
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x✝ y✝ : ℝ b_pos : 0 < b b_lt_one : b < 1 x : ℝ hx : x < 0 y : ℝ hy : y < 0 hxy : x < y ⊢ |y| < |x|
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _
rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff]
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _
Mathlib.Analysis.SpecialFunctions.Log.Base.363_0.egNyp4fdqSCAE7f
theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ Tendsto (logb b) atTop atBot
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by
rw [tendsto_atTop_atBot]
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 ⊢ ∀ (b_1 : ℝ), ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ b_1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot]
intro e
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot]
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∃ i, ∀ (a : ℝ), i ≤ a → logb b a ≤ e
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e
use 1 ⊔ b ^ e
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e : ℝ ⊢ ∀ (a : ℝ), 1 ⊔ b ^ e ≤ a → logb b a ≤ e
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e
intro a
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ⊢ 1 ⊔ b ^ e ≤ a → logb b a ≤ e
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a
simp only [and_imp, sup_le_iff]
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ⊢ 1 ≤ a → b ^ e ≤ a → logb b a ≤ e
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff]
intro ha
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff]
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ b ^ e ≤ a → logb b a ≤ e
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha
rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one]
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ b ^ e ≤ a → b ^ e ≤ a case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ 0 < a
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one]
tauto
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one]
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
case h b x y : ℝ b_pos : 0 < b b_lt_one : b < 1 e a : ℝ ha : 1 ≤ a ⊢ 0 < a
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto
exact lt_of_lt_of_le zero_lt_one ha
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto
Mathlib.Analysis.SpecialFunctions.Log.Base.383_0.egNyp4fdqSCAE7f
theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot
Mathlib_Analysis_SpecialFunctions_Log_Base
b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr : 0 ≤ r ⊢ ⌊logb (↑b) r⌋ = Int.log b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by
obtain rfl | hr := hr.eq_or_lt
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inl b✝ x y : ℝ b : ℕ hb : 1 < b hr : 0 ≤ 0 ⊢ ⌊logb (↑b) 0⌋ = Int.log b 0
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt ·
rw [logb_zero, Int.log_zero_right, Int.floor_zero]
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt ·
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r ⊢ ⌊logb (↑b) r⌋ = Int.log b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero]
have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero]
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌊logb (↑b) r⌋ = Int.log b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
apply le_antisymm
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌊logb (↑b) r⌋ ≤ Int.log b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm ·
rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b]
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm ·
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b]
refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr)
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b]
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ ↑⌊logb (↑b) r⌋ ≤ ↑b ^ logb (↑b) r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr)
exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _)
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr)
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ Int.log b r ≤ ⌊logb (↑b) r⌋
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) ·
rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast]
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) ·
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ Int.log b r ≤ r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast]
exact Int.zpow_log_le_self hb hr
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast]
Mathlib.Analysis.SpecialFunctions.Log.Base.397_0.egNyp4fdqSCAE7f
theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r
Mathlib_Analysis_SpecialFunctions_Log_Base
b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr : 0 ≤ r ⊢ ⌈logb (↑b) r⌉ = Int.clog b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by
obtain rfl | hr := hr.eq_or_lt
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inl b✝ x y : ℝ b : ℕ hb : 1 < b hr : 0 ≤ 0 ⊢ ⌈logb (↑b) 0⌉ = Int.clog b 0
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt ·
rw [logb_zero, Int.clog_zero_right, Int.ceil_zero]
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt ·
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r ⊢ ⌈logb (↑b) r⌉ = Int.clog b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero]
have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero]
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌈logb (↑b) r⌉ = Int.clog b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
apply le_antisymm
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ⌈logb (↑b) r⌉ ≤ Int.clog b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm ·
rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast]
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm ·
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ r ≤ ↑b ^ Int.clog b r
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast]
refine' Int.self_le_zpow_clog hb r
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast]
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ Int.clog b r ≤ ⌈logb (↑b) r⌉
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r ·
rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b]
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r ·
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ r ≤ ↑b ^ ↑⌈logb (↑b) r⌉
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b]
refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b]
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
case inr.a b✝ x y : ℝ b : ℕ r : ℝ hb : 1 < b hr✝ : 0 ≤ r hr : 0 < r hb1' : 1 < ↑b ⊢ ↑b ^ logb (↑b) r ≤ ↑b ^ ↑⌈logb (↑b) r⌉
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _
exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _)
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _
Mathlib.Analysis.SpecialFunctions.Log.Base.410_0.egNyp4fdqSCAE7f
theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ ⊢ logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by
simp_rw [logb, div_eq_zero_iff, log_eq_zero]
@[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by
Mathlib.Analysis.SpecialFunctions.Log.Base.423_0.egNyp4fdqSCAE7f
@[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ ⊢ (x = 0 ∨ x = 1 ∨ x = -1) ∨ b = 0 ∨ b = 1 ∨ b = -1 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero]
tauto
@[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero]
Mathlib.Analysis.SpecialFunctions.Log.Base.423_0.egNyp4fdqSCAE7f
@[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf : ∀ x ∈ s, f x ≠ 0 ⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by
classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by
Mathlib.Analysis.SpecialFunctions.Log.Base.432_0.egNyp4fdqSCAE7f
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
Mathlib_Analysis_SpecialFunctions_Log_Base
b x y : ℝ α : Type u_1 s : Finset α f : α → ℝ hf : ∀ x ∈ s, f x ≠ 0 ⊢ logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical
induction' s using Finset.induction_on with a s ha ih
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical
Mathlib.Analysis.SpecialFunctions.Log.Base.432_0.egNyp4fdqSCAE7f
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
Mathlib_Analysis_SpecialFunctions_Log_Base
case empty b x y : ℝ α : Type u_1 f : α → ℝ hf : ∀ x ∈ ∅, f x ≠ 0 ⊢ logb b (∏ i in ∅, f i) = ∑ i in ∅, logb b (f i)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih ·
simp
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih ·
Mathlib.Analysis.SpecialFunctions.Log.Base.432_0.egNyp4fdqSCAE7f
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
Mathlib_Analysis_SpecialFunctions_Log_Base
case insert b x y : ℝ α : Type u_1 f : α → ℝ a : α s : Finset α ha : a ∉ s ih : (∀ x ∈ s, f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) hf : ∀ x ∈ insert a s, f x ≠ 0 ⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp
simp only [Finset.mem_insert, forall_eq_or_imp] at hf
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp
Mathlib.Analysis.SpecialFunctions.Log.Base.432_0.egNyp4fdqSCAE7f
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
Mathlib_Analysis_SpecialFunctions_Log_Base
case insert b x y : ℝ α : Type u_1 f : α → ℝ a : α s : Finset α ha : a ∉ s ih : (∀ x ∈ s, f x ≠ 0) → logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) hf : f a ≠ 0 ∧ ∀ a ∈ s, f a ≠ 0 ⊢ logb b (∏ i in insert a s, f i) = ∑ i in insert a s, logb b (f i)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf
simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)]
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf
Mathlib.Analysis.SpecialFunctions.Log.Base.432_0.egNyp4fdqSCAE7f
theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i)
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z ⊢ ∀ x ≥ x₀, P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by
suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z this : ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x ⊢ ∀ x ≥ x₀, P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by
intro x hx
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z this : ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x x : ℝ hx : x ≥ x₀ ⊢ P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx
have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z this : ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x x : ℝ hx : x ≥ x₀ hx' : 0 < x / x₀ ⊢ P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀
refine this ⌊logb r (x / x₀)⌋₊ x ?_
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z this : ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x x : ℝ hx : x ≥ x₀ hx' : 0 < x / x₀ ⊢ x ∈ Ico x₀ (r ^ (⌊logb r (x / x₀)⌋₊ + 1) * x₀)
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_
rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one]
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z this : ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x x : ℝ hx : x ≥ x₀ hx' : 0 < x / x₀ ⊢ x₀ ≤ x ∧ logb r (x / x₀) < ↑⌊logb r (x / x₀)⌋₊ + 1
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one]
exact ⟨hx, Nat.lt_floor_add_one _⟩
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one]
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z ⊢ ∀ (n : ℕ), ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩
intro n
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z n : ℕ ⊢ ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩ intro n
induction n with | zero => simpa using base | succ n ih => exact fun x hx => (Ico_subset_Ico_union_Ico hx).elim (ih x) (step (n + 1) (by simp) ih _)
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩ intro n
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base
P : ℝ → Prop x₀ r : ℝ hr : 1 < r hx₀ : 0 < x₀ base : ∀ x ∈ Ico x₀ (r * x₀), P x step : ∀ n ≥ 1, (∀ z ∈ Ico x₀ (r ^ n * x₀), P z) → ∀ z ∈ Ico (r ^ n * x₀) (r ^ (n + 1) * x₀), P z n : ℕ ⊢ ∀ x ∈ Ico x₀ (r ^ (n + 1) * x₀), P x
/- Copyright (c) 2022 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey, Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne -/ import Mathlib.Analysis.SpecialFunctions.Pow.Real import Mathlib.Data.Int.Log #align_import analysis.special_functions.log.base from "leanprover-community/mathlib"@"f23a09ce6d3f367220dc3cecad6b7eb69eb01690" /-! # Real logarithm base `b` In this file we define `Real.logb` to be the logarithm of a real number in a given base `b`. We define this as the division of the natural logarithms of the argument and the base, so that we have a globally defined function with `logb b 0 = 0`, `logb b (-x) = logb b x` `logb 0 x = 0` and `logb (-b) x = logb b x`. We prove some basic properties of this function and its relation to `rpow`. ## Tags logarithm, continuity -/ open Set Filter Function open Topology noncomputable section namespace Real variable {b x y : ℝ} /-- The real logarithm in a given base. As with the natural logarithm, we define `logb b x` to be `logb b |x|` for `x < 0`, and `0` for `x = 0`.-/ -- @[pp_nodot] -- Porting note: removed noncomputable def logb (b x : ℝ) : ℝ := log x / log b #align real.logb Real.logb theorem log_div_log : log x / log b = logb b x := rfl #align real.log_div_log Real.log_div_log @[simp] theorem logb_zero : logb b 0 = 0 := by simp [logb] #align real.logb_zero Real.logb_zero @[simp] theorem logb_one : logb b 1 = 0 := by simp [logb] #align real.logb_one Real.logb_one @[simp] lemma logb_self_eq_one (hb : 1 < b) : logb b b = 1 := div_self (log_pos hb).ne' lemma logb_self_eq_one_iff : logb b b = 1 ↔ b ≠ 0 ∧ b ≠ 1 ∧ b ≠ -1 := Iff.trans ⟨fun h h' => by simp [logb, h'] at h, div_self⟩ log_ne_zero @[simp] theorem logb_abs (x : ℝ) : logb b |x| = logb b x := by rw [logb, logb, log_abs] #align real.logb_abs Real.logb_abs @[simp] theorem logb_neg_eq_logb (x : ℝ) : logb b (-x) = logb b x := by rw [← logb_abs x, ← logb_abs (-x), abs_neg] #align real.logb_neg_eq_logb Real.logb_neg_eq_logb theorem logb_mul (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x * y) = logb b x + logb b y := by simp_rw [logb, log_mul hx hy, add_div] #align real.logb_mul Real.logb_mul theorem logb_div (hx : x ≠ 0) (hy : y ≠ 0) : logb b (x / y) = logb b x - logb b y := by simp_rw [logb, log_div hx hy, sub_div] #align real.logb_div Real.logb_div @[simp] theorem logb_inv (x : ℝ) : logb b x⁻¹ = -logb b x := by simp [logb, neg_div] #align real.logb_inv Real.logb_inv theorem inv_logb (a b : ℝ) : (logb a b)⁻¹ = logb b a := by simp_rw [logb, inv_div] #align real.inv_logb Real.inv_logb theorem inv_logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a * b) c)⁻¹ = (logb a c)⁻¹ + (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_mul h₁ h₂ #align real.inv_logb_mul_base Real.inv_logb_mul_base theorem inv_logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : (logb (a / b) c)⁻¹ = (logb a c)⁻¹ - (logb b c)⁻¹ := by simp_rw [inv_logb]; exact logb_div h₁ h₂ #align real.inv_logb_div_base Real.inv_logb_div_base theorem logb_mul_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a * b) c = ((logb a c)⁻¹ + (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_mul_base h₁ h₂ c, inv_inv] #align real.logb_mul_base Real.logb_mul_base theorem logb_div_base {a b : ℝ} (h₁ : a ≠ 0) (h₂ : b ≠ 0) (c : ℝ) : logb (a / b) c = ((logb a c)⁻¹ - (logb b c)⁻¹)⁻¹ := by rw [← inv_logb_div_base h₁ h₂ c, inv_inv] #align real.logb_div_base Real.logb_div_base theorem mul_logb {a b c : ℝ} (h₁ : b ≠ 0) (h₂ : b ≠ 1) (h₃ : b ≠ -1) : logb a b * logb b c = logb a c := by unfold logb rw [mul_comm, div_mul_div_cancel _ (log_ne_zero.mpr ⟨h₁, h₂, h₃⟩)] #align real.mul_logb Real.mul_logb theorem div_logb {a b c : ℝ} (h₁ : c ≠ 0) (h₂ : c ≠ 1) (h₃ : c ≠ -1) : logb a c / logb b c = logb a b := div_div_div_cancel_left' _ _ <| log_ne_zero.mpr ⟨h₁, h₂, h₃⟩ #align real.div_logb Real.div_logb section BPosAndNeOne variable (b_pos : 0 < b) (b_ne_one : b ≠ 1) private theorem log_b_ne_zero : log b ≠ 0 := by have b_ne_zero : b ≠ 0; linarith have b_ne_minus_one : b ≠ -1; linarith simp [b_ne_one, b_ne_zero, b_ne_minus_one] @[simp] theorem logb_rpow : logb b (b ^ x) = x := by rw [logb, div_eq_iff, log_rpow b_pos] exact log_b_ne_zero b_pos b_ne_one #align real.logb_rpow Real.logb_rpow theorem rpow_logb_eq_abs (hx : x ≠ 0) : b ^ logb b x = |x| := by apply log_injOn_pos simp only [Set.mem_Ioi] apply rpow_pos_of_pos b_pos simp only [abs_pos, mem_Ioi, Ne.def, hx, not_false_iff] rw [log_rpow b_pos, logb, log_abs] field_simp [log_b_ne_zero b_pos b_ne_one] #align real.rpow_logb_eq_abs Real.rpow_logb_eq_abs @[simp] theorem rpow_logb (hx : 0 < x) : b ^ logb b x = x := by rw [rpow_logb_eq_abs b_pos b_ne_one hx.ne'] exact abs_of_pos hx #align real.rpow_logb Real.rpow_logb theorem rpow_logb_of_neg (hx : x < 0) : b ^ logb b x = -x := by rw [rpow_logb_eq_abs b_pos b_ne_one (ne_of_lt hx)] exact abs_of_neg hx #align real.rpow_logb_of_neg Real.rpow_logb_of_neg theorem surjOn_logb : SurjOn (logb b) (Ioi 0) univ := fun x _ => ⟨rpow b x, rpow_pos_of_pos b_pos x, logb_rpow b_pos b_ne_one⟩ #align real.surj_on_logb Real.surjOn_logb theorem logb_surjective : Surjective (logb b) := fun x => ⟨b ^ x, logb_rpow b_pos b_ne_one⟩ #align real.logb_surjective Real.logb_surjective @[simp] theorem range_logb : range (logb b) = univ := (logb_surjective b_pos b_ne_one).range_eq #align real.range_logb Real.range_logb theorem surjOn_logb' : SurjOn (logb b) (Iio 0) univ := by intro x _ use -b ^ x constructor · simp only [Right.neg_neg_iff, Set.mem_Iio] apply rpow_pos_of_pos b_pos · rw [logb_neg_eq_logb, logb_rpow b_pos b_ne_one] #align real.surj_on_logb' Real.surjOn_logb' end BPosAndNeOne section OneLtB variable (hb : 1 < b) private theorem b_pos : 0 < b := by linarith -- Porting note: prime added to avoid clashing with `b_ne_one` further down the file private theorem b_ne_one' : b ≠ 1 := by linarith @[simp] theorem logb_le_logb (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ x ≤ y := by rw [logb, logb, div_le_div_right (log_pos hb), log_le_log_iff h h₁] #align real.logb_le_logb Real.logb_le_logb @[gcongr] theorem logb_le_logb_of_le (h : 0 < x) (hxy : x ≤ y) : logb b x ≤ logb b y := (logb_le_logb hb h (by linarith)).mpr hxy @[gcongr] theorem logb_lt_logb (hx : 0 < x) (hxy : x < y) : logb b x < logb b y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log hx hxy #align real.logb_lt_logb Real.logb_lt_logb @[simp] theorem logb_lt_logb_iff (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ x < y := by rw [logb, logb, div_lt_div_right (log_pos hb)] exact log_lt_log_iff hx hy #align real.logb_lt_logb_iff Real.logb_lt_logb_iff theorem logb_le_iff_le_rpow (hx : 0 < x) : logb b x ≤ y ↔ x ≤ b ^ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_le_iff_le_rpow Real.logb_le_iff_le_rpow theorem logb_lt_iff_lt_rpow (hx : 0 < x) : logb b x < y ↔ x < b ^ y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hx] #align real.logb_lt_iff_lt_rpow Real.logb_lt_iff_lt_rpow theorem le_logb_iff_rpow_le (hy : 0 < y) : x ≤ logb b y ↔ b ^ x ≤ y := by rw [← rpow_le_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.le_logb_iff_rpow_le Real.le_logb_iff_rpow_le theorem lt_logb_iff_rpow_lt (hy : 0 < y) : x < logb b y ↔ b ^ x < y := by rw [← rpow_lt_rpow_left_iff hb, rpow_logb (b_pos hb) (b_ne_one' hb) hy] #align real.lt_logb_iff_rpow_lt Real.lt_logb_iff_rpow_lt theorem logb_pos_iff (hx : 0 < x) : 0 < logb b x ↔ 1 < x := by rw [← @logb_one b] rw [logb_lt_logb_iff hb zero_lt_one hx] #align real.logb_pos_iff Real.logb_pos_iff theorem logb_pos (hx : 1 < x) : 0 < logb b x := by rw [logb_pos_iff hb (lt_trans zero_lt_one hx)] exact hx #align real.logb_pos Real.logb_pos theorem logb_neg_iff (h : 0 < x) : logb b x < 0 ↔ x < 1 := by rw [← logb_one] exact logb_lt_logb_iff hb h zero_lt_one #align real.logb_neg_iff Real.logb_neg_iff theorem logb_neg (h0 : 0 < x) (h1 : x < 1) : logb b x < 0 := (logb_neg_iff hb h0).2 h1 #align real.logb_neg Real.logb_neg theorem logb_nonneg_iff (hx : 0 < x) : 0 ≤ logb b x ↔ 1 ≤ x := by rw [← not_lt, logb_neg_iff hb hx, not_lt] #align real.logb_nonneg_iff Real.logb_nonneg_iff theorem logb_nonneg (hx : 1 ≤ x) : 0 ≤ logb b x := (logb_nonneg_iff hb (zero_lt_one.trans_le hx)).2 hx #align real.logb_nonneg Real.logb_nonneg theorem logb_nonpos_iff (hx : 0 < x) : logb b x ≤ 0 ↔ x ≤ 1 := by rw [← not_lt, logb_pos_iff hb hx, not_lt] #align real.logb_nonpos_iff Real.logb_nonpos_iff theorem logb_nonpos_iff' (hx : 0 ≤ x) : logb b x ≤ 0 ↔ x ≤ 1 := by rcases hx.eq_or_lt with (rfl | hx) · simp [le_refl, zero_le_one] exact logb_nonpos_iff hb hx #align real.logb_nonpos_iff' Real.logb_nonpos_iff' theorem logb_nonpos (hx : 0 ≤ x) (h'x : x ≤ 1) : logb b x ≤ 0 := (logb_nonpos_iff' hb hx).2 h'x #align real.logb_nonpos Real.logb_nonpos theorem strictMonoOn_logb : StrictMonoOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb hb hx hxy #align real.strict_mono_on_logb Real.strictMonoOn_logb theorem strictAntiOn_logb : StrictAntiOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb hb (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_anti_on_logb Real.strictAntiOn_logb theorem logb_injOn_pos : Set.InjOn (logb b) (Set.Ioi 0) := (strictMonoOn_logb hb).injOn #align real.logb_inj_on_pos Real.logb_injOn_pos theorem eq_one_of_pos_of_logb_eq_zero (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos hb (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero Real.eq_one_of_pos_of_logb_eq_zero theorem logb_ne_zero_of_pos_of_ne_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero hb hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one Real.logb_ne_zero_of_pos_of_ne_one theorem tendsto_logb_atTop : Tendsto (logb b) atTop atTop := Tendsto.atTop_div_const (log_pos hb) tendsto_log_atTop #align real.tendsto_logb_at_top Real.tendsto_logb_atTop end OneLtB section BPosAndBLtOne variable (b_pos : 0 < b) (b_lt_one : b < 1) private theorem b_ne_one : b ≠ 1 := by linarith @[simp] theorem logb_le_logb_of_base_lt_one (h : 0 < x) (h₁ : 0 < y) : logb b x ≤ logb b y ↔ y ≤ x := by rw [logb, logb, div_le_div_right_of_neg (log_neg b_pos b_lt_one), log_le_log_iff h₁ h] #align real.logb_le_logb_of_base_lt_one Real.logb_le_logb_of_base_lt_one theorem logb_lt_logb_of_base_lt_one (hx : 0 < x) (hxy : x < y) : logb b y < logb b x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log hx hxy #align real.logb_lt_logb_of_base_lt_one Real.logb_lt_logb_of_base_lt_one @[simp] theorem logb_lt_logb_iff_of_base_lt_one (hx : 0 < x) (hy : 0 < y) : logb b x < logb b y ↔ y < x := by rw [logb, logb, div_lt_div_right_of_neg (log_neg b_pos b_lt_one)] exact log_lt_log_iff hy hx #align real.logb_lt_logb_iff_of_base_lt_one Real.logb_lt_logb_iff_of_base_lt_one theorem logb_le_iff_le_rpow_of_base_lt_one (hx : 0 < x) : logb b x ≤ y ↔ b ^ y ≤ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_le_iff_le_rpow_of_base_lt_one Real.logb_le_iff_le_rpow_of_base_lt_one theorem logb_lt_iff_lt_rpow_of_base_lt_one (hx : 0 < x) : logb b x < y ↔ b ^ y < x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hx] #align real.logb_lt_iff_lt_rpow_of_base_lt_one Real.logb_lt_iff_lt_rpow_of_base_lt_one theorem le_logb_iff_rpow_le_of_base_lt_one (hy : 0 < y) : x ≤ logb b y ↔ y ≤ b ^ x := by rw [← rpow_le_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.le_logb_iff_rpow_le_of_base_lt_one Real.le_logb_iff_rpow_le_of_base_lt_one theorem lt_logb_iff_rpow_lt_of_base_lt_one (hy : 0 < y) : x < logb b y ↔ y < b ^ x := by rw [← rpow_lt_rpow_left_iff_of_base_lt_one b_pos b_lt_one, rpow_logb b_pos (b_ne_one b_lt_one) hy] #align real.lt_logb_iff_rpow_lt_of_base_lt_one Real.lt_logb_iff_rpow_lt_of_base_lt_one theorem logb_pos_iff_of_base_lt_one (hx : 0 < x) : 0 < logb b x ↔ x < 1 := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one zero_lt_one hx] #align real.logb_pos_iff_of_base_lt_one Real.logb_pos_iff_of_base_lt_one theorem logb_pos_of_base_lt_one (hx : 0 < x) (hx' : x < 1) : 0 < logb b x := by rw [logb_pos_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_pos_of_base_lt_one Real.logb_pos_of_base_lt_one theorem logb_neg_iff_of_base_lt_one (h : 0 < x) : logb b x < 0 ↔ 1 < x := by rw [← @logb_one b, logb_lt_logb_iff_of_base_lt_one b_pos b_lt_one h zero_lt_one] #align real.logb_neg_iff_of_base_lt_one Real.logb_neg_iff_of_base_lt_one theorem logb_neg_of_base_lt_one (h1 : 1 < x) : logb b x < 0 := (logb_neg_iff_of_base_lt_one b_pos b_lt_one (lt_trans zero_lt_one h1)).2 h1 #align real.logb_neg_of_base_lt_one Real.logb_neg_of_base_lt_one theorem logb_nonneg_iff_of_base_lt_one (hx : 0 < x) : 0 ≤ logb b x ↔ x ≤ 1 := by rw [← not_lt, logb_neg_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonneg_iff_of_base_lt_one Real.logb_nonneg_iff_of_base_lt_one theorem logb_nonneg_of_base_lt_one (hx : 0 < x) (hx' : x ≤ 1) : 0 ≤ logb b x := by rw [logb_nonneg_iff_of_base_lt_one b_pos b_lt_one hx] exact hx' #align real.logb_nonneg_of_base_lt_one Real.logb_nonneg_of_base_lt_one theorem logb_nonpos_iff_of_base_lt_one (hx : 0 < x) : logb b x ≤ 0 ↔ 1 ≤ x := by rw [← not_lt, logb_pos_iff_of_base_lt_one b_pos b_lt_one hx, not_lt] #align real.logb_nonpos_iff_of_base_lt_one Real.logb_nonpos_iff_of_base_lt_one theorem strictAntiOn_logb_of_base_lt_one : StrictAntiOn (logb b) (Set.Ioi 0) := fun _ hx _ _ hxy => logb_lt_logb_of_base_lt_one b_pos b_lt_one hx hxy #align real.strict_anti_on_logb_of_base_lt_one Real.strictAntiOn_logb_of_base_lt_one theorem strictMonoOn_logb_of_base_lt_one : StrictMonoOn (logb b) (Set.Iio 0) := by rintro x (hx : x < 0) y (hy : y < 0) hxy rw [← logb_abs y, ← logb_abs x] refine' logb_lt_logb_of_base_lt_one b_pos b_lt_one (abs_pos.2 hy.ne) _ rwa [abs_of_neg hy, abs_of_neg hx, neg_lt_neg_iff] #align real.strict_mono_on_logb_of_base_lt_one Real.strictMonoOn_logb_of_base_lt_one theorem logb_injOn_pos_of_base_lt_one : Set.InjOn (logb b) (Set.Ioi 0) := (strictAntiOn_logb_of_base_lt_one b_pos b_lt_one).injOn #align real.logb_inj_on_pos_of_base_lt_one Real.logb_injOn_pos_of_base_lt_one theorem eq_one_of_pos_of_logb_eq_zero_of_base_lt_one (h₁ : 0 < x) (h₂ : logb b x = 0) : x = 1 := logb_injOn_pos_of_base_lt_one b_pos b_lt_one (Set.mem_Ioi.2 h₁) (Set.mem_Ioi.2 zero_lt_one) (h₂.trans Real.logb_one.symm) #align real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one Real.eq_one_of_pos_of_logb_eq_zero_of_base_lt_one theorem logb_ne_zero_of_pos_of_ne_one_of_base_lt_one (hx_pos : 0 < x) (hx : x ≠ 1) : logb b x ≠ 0 := mt (eq_one_of_pos_of_logb_eq_zero_of_base_lt_one b_pos b_lt_one hx_pos) hx #align real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one Real.logb_ne_zero_of_pos_of_ne_one_of_base_lt_one theorem tendsto_logb_atTop_of_base_lt_one : Tendsto (logb b) atTop atBot := by rw [tendsto_atTop_atBot] intro e use 1 ⊔ b ^ e intro a simp only [and_imp, sup_le_iff] intro ha rw [logb_le_iff_le_rpow_of_base_lt_one b_pos b_lt_one] tauto exact lt_of_lt_of_le zero_lt_one ha #align real.tendsto_logb_at_top_of_base_lt_one Real.tendsto_logb_atTop_of_base_lt_one end BPosAndBLtOne theorem floor_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌊logb b r⌋ = Int.log b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.log_zero_right, Int.floor_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [← Int.zpow_le_iff_le_log hb hr, ← rpow_int_cast b] refine' le_of_le_of_eq _ (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr) exact rpow_le_rpow_of_exponent_le hb1'.le (Int.floor_le _) · rw [Int.le_floor, le_logb_iff_rpow_le hb1' hr, rpow_int_cast] exact Int.zpow_log_le_self hb hr #align real.floor_logb_nat_cast Real.floor_logb_nat_cast theorem ceil_logb_nat_cast {b : ℕ} {r : ℝ} (hb : 1 < b) (hr : 0 ≤ r) : ⌈logb b r⌉ = Int.clog b r := by obtain rfl | hr := hr.eq_or_lt · rw [logb_zero, Int.clog_zero_right, Int.ceil_zero] have hb1' : 1 < (b : ℝ) := Nat.one_lt_cast.mpr hb apply le_antisymm · rw [Int.ceil_le, logb_le_iff_le_rpow hb1' hr, rpow_int_cast] refine' Int.self_le_zpow_clog hb r · rw [← Int.le_zpow_iff_clog_le hb hr, ← rpow_int_cast b] refine' (rpow_logb (zero_lt_one.trans hb1') hb1'.ne' hr).symm.trans_le _ exact rpow_le_rpow_of_exponent_le hb1'.le (Int.le_ceil _) #align real.ceil_logb_nat_cast Real.ceil_logb_nat_cast @[simp] theorem logb_eq_zero : logb b x = 0 ↔ b = 0 ∨ b = 1 ∨ b = -1 ∨ x = 0 ∨ x = 1 ∨ x = -1 := by simp_rw [logb, div_eq_zero_iff, log_eq_zero] tauto #align real.logb_eq_zero Real.logb_eq_zero -- TODO add other limits and continuous API lemmas analogous to those in Log.lean open BigOperators theorem logb_prod {α : Type*} (s : Finset α) (f : α → ℝ) (hf : ∀ x ∈ s, f x ≠ 0) : logb b (∏ i in s, f i) = ∑ i in s, logb b (f i) := by classical induction' s using Finset.induction_on with a s ha ih · simp simp only [Finset.mem_insert, forall_eq_or_imp] at hf simp [ha, ih hf.2, logb_mul hf.1 (Finset.prod_ne_zero_iff.2 hf.2)] #align real.logb_prod Real.logb_prod end Real section Induction /-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩ intro n
induction n with | zero => simpa using base | succ n ih => exact fun x hx => (Ico_subset_Ico_union_Ico hx).elim (ih x) (step (n + 1) (by simp) ih _)
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x := by suffices ∀ n : ℕ, ∀ x ∈ Set.Ico x₀ (r ^ (n + 1) * x₀), P x by intro x hx have hx' : 0 < x / x₀ := div_pos (hx₀.trans_le hx) hx₀ refine this ⌊logb r (x / x₀)⌋₊ x ?_ rw [mem_Ico, ← div_lt_iff hx₀, ← rpow_nat_cast, ← logb_lt_iff_lt_rpow hr hx', Nat.cast_add, Nat.cast_one] exact ⟨hx, Nat.lt_floor_add_one _⟩ intro n
Mathlib.Analysis.SpecialFunctions.Log.Base.445_0.egNyp4fdqSCAE7f
/-- Induction principle for intervals of real numbers: if a proposition `P` is true on `[x₀, r * x₀)` and if `P` for `[x₀, r^n * x₀)` implies `P` for `[r^n * x₀, r^(n+1) * x₀)`, then `P` is true for all `x ≥ x₀`. -/ lemma Real.induction_Ico_mul {P : ℝ → Prop} (x₀ r : ℝ) (hr : 1 < r) (hx₀ : 0 < x₀) (base : ∀ x ∈ Set.Ico x₀ (r * x₀), P x) (step : ∀ n : ℕ, n ≥ 1 → (∀ z ∈ Set.Ico x₀ (r ^ n * x₀), P z) → (∀ z ∈ Set.Ico (r ^ n * x₀) (r ^ (n+1) * x₀), P z)) : ∀ x ≥ x₀, P x
Mathlib_Analysis_SpecialFunctions_Log_Base