state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 ⊒ J / spanSingleton R₁⁰ d ≀ 1 / spanSingleton R₁⁰ d * J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β·
intro x hx
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β·
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x ∈ (fun a => ↑a) (J / spanSingleton R₁⁰ d) ⊒ x ∈ (fun a => ↑a) (1 / spanSingleton R₁⁰ d * J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx
dsimp only [val_eq_coe] at hx ⊒
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x ∈ ↑(J / spanSingleton R₁⁰ d) ⊒ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s
rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : βˆ€ y ∈ ↑(spanSingleton R₁⁰ d), x * y ∈ ↑J ⊒ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx
specialize hx d (mem_spanSingleton_self R₁⁰ d)
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x * d ∈ ↑J ⊒ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d)
have h_xd : x = d⁻¹ * (x * d) := by field_simp
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d)
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x * d ∈ ↑J ⊒ x = d⁻¹ * (x * d)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by
field_simp
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x * d ∈ ↑J h_xd : x = d⁻¹ * (x * d) ⊒ x ∈ ↑(1 / spanSingleton R₁⁰ d * J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp
rw [coe_mul, one_div_spanSingleton, h_xd]
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 x : K hx : x * d ∈ ↑J h_xd : x = d⁻¹ * (x * d) ⊒ d⁻¹ * (x * d) ∈ ↑(spanSingleton R₁⁰ d⁻¹) * ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd]
exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd]
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
case neg.a R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ J : FractionalIdeal R₁⁰ K d : K hd : Β¬d = 0 h_spand : spanSingleton R₁⁰ d β‰  0 ⊒ 1 / spanSingleton R₁⁰ d * J ≀ J / spanSingleton R₁⁰ d
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β·
rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one]
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β·
Mathlib.RingTheory.FractionalIdeal.1461_0.90B1BH8AtSmfl9S
@[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K ⊒ βˆƒ a aI, a β‰  0 ∧ I = spanSingleton R₁⁰ ((algebraMap R₁ K) a)⁻¹ * ↑aI
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by
obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) ⊒ βˆƒ a aI, a β‰  0 ∧ I = spanSingleton R₁⁰ ((algebraMap R₁ K) a)⁻¹ * ↑aI
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional
have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 ⊒ βˆƒ a aI, a β‰  0 ∧ I = spanSingleton R₁⁰ ((algebraMap R₁ K) a)⁻¹ * ↑aI
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero
have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 ⊒ βˆƒ a aI, a β‰  0 ∧ I = spanSingleton R₁⁰ ((algebraMap R₁ K) a)⁻¹ * ↑aI
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero
refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1 R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K ⊒ x ∈ I β†’ βˆƒ y' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)), x = ((algebraMap R₁ K) a_inv)⁻¹ * y'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β·
intro hx
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β·
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1 R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K hx : x ∈ I ⊒ βˆƒ y' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)), x = ((algebraMap R₁ K) a_inv)⁻¹ * y'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx
obtain ⟨x', hx'⟩ := ha x hx
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K hx : x ∈ I x' : R₁ hx' : (algebraMap R₁ K) x' = a_inv β€’ x ⊒ βˆƒ y' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)), x = ((algebraMap R₁ K) a_inv)⁻¹ * y'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx
rw [Algebra.smul_def] at hx'
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K hx : x ∈ I x' : R₁ hx' : (algebraMap R₁ K) x' = (algebraMap R₁ K) a_inv * x ⊒ βˆƒ y' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)), x = ((algebraMap R₁ K) a_inv)⁻¹ * y'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx'
refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx'
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1.intro.refine'_1 R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K hx : x ∈ I x' : R₁ hx' : (algebraMap R₁ K) x' = (algebraMap R₁ K) a_inv * x ⊒ βˆƒ y' ∈ I, (Algebra.linearMap R₁ K) x' = (algebraMap R₁ K) a_inv * y'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β·
exact ⟨x, hx, hx'⟩
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β·
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_1.intro.refine'_2 R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K hx : x ∈ I x' : R₁ hx' : (algebraMap R₁ K) x' = (algebraMap R₁ K) a_inv * x ⊒ x = ((algebraMap R₁ K) a_inv)⁻¹ * (algebraMap R₁ K) x'
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β·
rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul]
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β·
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_2 R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x : K ⊒ (βˆƒ y' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)), x = ((algebraMap R₁ K) a_inv)⁻¹ * y') β†’ x ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β·
rintro ⟨y, hy, rfl⟩
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β·
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_2.intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 y : K hy : y ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)) ⊒ ((algebraMap R₁ K) a_inv)⁻¹ * y ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩
obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_2.intro.intro.intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x' : R₁ hx' : x' ∈ comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I) hy : (algebraMap R₁ K) x' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)) ⊒ ((algebraMap R₁ K) a_inv)⁻¹ * (algebraMap R₁ K) x' ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy
obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx'
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_2.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x' : R₁ hx'✝ : x' ∈ comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I) hy : (algebraMap R₁ K) x' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)) y' : K hy' : y' ∈ I hx' : (Algebra.linearMap R₁ K) x' = (algebraMap R₁ K) a_inv * y' ⊒ ((algebraMap R₁ K) a_inv)⁻¹ * (algebraMap R₁ K) x' ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx'
rw [Algebra.linearMap_apply] at hx'
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx'
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
case intro.intro.refine'_2.intro.intro.intro.intro.intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ I : FractionalIdeal R₁⁰ K a_inv : R₁ nonzero✝ : a_inv ∈ R₁⁰ ha : βˆ€ b ∈ ↑I, IsInteger R₁ (a_inv β€’ b) nonzero : a_inv β‰  0 map_a_nonzero : (algebraMap R₁ K) a_inv β‰  0 x' : R₁ hx'✝ : x' ∈ comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I) hy : (algebraMap R₁ K) x' ∈ ↑(comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ ((algebraMap R₁ K) a_inv) * I)) y' : K hy' : y' ∈ I hx' : (algebraMap R₁ K) x' = (algebraMap R₁ K) a_inv * y' ⊒ ((algebraMap R₁ K) a_inv)⁻¹ * (algebraMap R₁ K) x' ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx'
rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul]
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx'
Mathlib.RingTheory.FractionalIdeal.1480_0.90B1BH8AtSmfl9S
theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K ⊒ IsPrincipal ↑I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by
obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
case intro.intro.intro R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI ⊒ IsPrincipal ↑I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I
use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI)
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
case h R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI ⊒ ↑I = span R {((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)}
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI)
suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI)
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI this : I = spanSingleton R⁰ (((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)) ⊒ ↑I = span R {((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)}
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by
rw [spanSingleton] at this
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI this : I = { val := span R {((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)}, property := (_ : IsFractional R⁰ (span R {((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)})) } ⊒ ↑I = span R {((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI)}
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this
exact congr_arg Subtype.val this
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
case h R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI ⊒ I = spanSingleton R⁰ (((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI))
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this
conv_lhs => rw [ha, ← span_singleton_generator aI]
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI | I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
rw [ha, ← span_singleton_generator aI]
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI | I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
rw [ha, ← span_singleton_generator aI]
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI | I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
rw [ha, ← span_singleton_generator aI]
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs =>
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
case h R✝ : Type u_1 inst✝¹² : CommRing R✝ S : Submonoid R✝ P : Type u_2 inst✝¹¹ : CommRing P inst✝¹⁰ : Algebra R✝ P loc : IsLocalization S P R₁ : Type u_3 inst✝⁹ : CommRing R₁ K : Type u_4 inst✝⁸ : Field K inst✝⁷ : Algebra R₁ K inst✝⁢ : IsFractionRing R₁ K inst✝⁡ : IsDomain R₁ R : Type ?u.1581927 inst✝⁴ : CommRing R inst✝³ : IsDomain R inst✝² : IsPrincipalIdealRing R inst✝¹ : Algebra R K inst✝ : IsFractionRing R K I : FractionalIdeal R⁰ K a : R aI : Ideal R ha : I = spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑aI ⊒ spanSingleton R⁰ ((algebraMap R K) a)⁻¹ * ↑(span R {generator aI}) = spanSingleton R⁰ (((algebraMap R K) a)⁻¹ * (algebraMap R K) (generator aI))
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI]
rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton]
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI]
Mathlib.RingTheory.FractionalIdeal.1503_0.90B1BH8AtSmfl9S
instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ (βˆ€ {zI : P}, zI ∈ I β†’ zI ∈ spanSingleton S x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by
simp only [mem_singleton_mul, eq_comm]
theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by
Mathlib.RingTheory.FractionalIdeal.1515_0.90B1BH8AtSmfl9S
theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ spanSingleton S x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by
simp only [mul_le, mem_singleton_mul, mem_spanSingleton]
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ (βˆ€ (i : P), (βˆƒ z, z β€’ x = i) β†’ βˆ€ j ∈ I, i * j ∈ J) ↔ βˆ€ z ∈ I, x * z ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton]
constructor
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton]
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
case mp R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ (βˆ€ (i : P), (βˆƒ z, z β€’ x = i) β†’ βˆ€ j ∈ I, i * j ∈ J) β†’ βˆ€ z ∈ I, x * z ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β·
intro h zI hzI
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β·
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
case mp R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P h : βˆ€ (i : P), (βˆƒ z, z β€’ x = i) β†’ βˆ€ j ∈ I, i * j ∈ J zI : P hzI : zI ∈ I ⊒ x * zI ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI
exact h x ⟨1, one_smul _ _⟩ zI hzI
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
case mpr R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ (βˆ€ z ∈ I, x * z ∈ J) β†’ βˆ€ (i : P), (βˆƒ z, z β€’ x = i) β†’ βˆ€ j ∈ I, i * j ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β·
rintro h _ ⟨z, rfl⟩ zI hzI
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β·
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
case mpr.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P h : βˆ€ z ∈ I, x * z ∈ J z : R zI : P hzI : zI ∈ I ⊒ z β€’ x * zI ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI
rw [Algebra.smul_mul_assoc]
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
case mpr.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P h : βˆ€ z ∈ I, x * z ∈ J z : R zI : P hzI : zI ∈ I ⊒ z β€’ (x * zI) ∈ J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc]
exact Submodule.smul_mem J.1 _ (h zI hzI)
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc]
Mathlib.RingTheory.FractionalIdeal.1521_0.90B1BH8AtSmfl9S
theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K inst✝¹ : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : P I J : FractionalIdeal S P ⊒ I = spanSingleton S x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by
simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff]
theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by
Mathlib.RingTheory.FractionalIdeal.1532_0.90B1BH8AtSmfl9S
theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁡ : CommRing R S : Submonoid R P : Type u_2 inst✝⁴ : CommRing P inst✝³ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝² : CommRing R₁ K : Type u_4 inst✝¹ : Field K inst✝ : Algebra R₁ K frac : IsFractionRing R₁ K I : Submodule R₁ K hI : I ≀ ↑0 ⊒ FG I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by
rw [coe_zero, le_bot_iff] at hI
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by
Mathlib.RingTheory.FractionalIdeal.1545_0.90B1BH8AtSmfl9S
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁡ : CommRing R S : Submonoid R P : Type u_2 inst✝⁴ : CommRing P inst✝³ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝² : CommRing R₁ K : Type u_4 inst✝¹ : Field K inst✝ : Algebra R₁ K frac : IsFractionRing R₁ K I : Submodule R₁ K hI : I = βŠ₯ ⊒ FG I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI
rw [hI]
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI
Mathlib.RingTheory.FractionalIdeal.1545_0.90B1BH8AtSmfl9S
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁡ : CommRing R S : Submonoid R P : Type u_2 inst✝⁴ : CommRing P inst✝³ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝² : CommRing R₁ K : Type u_4 inst✝¹ : Field K inst✝ : Algebra R₁ K frac : IsFractionRing R₁ K I : Submodule R₁ K hI : I = βŠ₯ ⊒ FG βŠ₯
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI]
exact fg_bot
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI]
Mathlib.RingTheory.FractionalIdeal.1545_0.90B1BH8AtSmfl9S
theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsNoetherianRing R₁ I : Ideal R₁ ⊒ IsNoetherian R₁ β†₯↑↑I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by
rw [isNoetherian_iff]
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by
Mathlib.RingTheory.FractionalIdeal.1557_0.90B1BH8AtSmfl9S
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsNoetherianRing R₁ I : Ideal R₁ ⊒ βˆ€ J ≀ ↑I, FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff]
intro J hJ
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff]
Mathlib.RingTheory.FractionalIdeal.1557_0.90B1BH8AtSmfl9S
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsNoetherianRing R₁ I : Ideal R₁ J : FractionalIdeal R₁⁰ K hJ : J ≀ ↑I ⊒ FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ
obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one)
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ
Mathlib.RingTheory.FractionalIdeal.1557_0.90B1BH8AtSmfl9S
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case intro R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsNoetherianRing R₁ I J : Ideal R₁ hJ : ↑J ≀ ↑I ⊒ FG ↑↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one)
exact (IsNoetherian.noetherian J).map _
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one)
Mathlib.RingTheory.FractionalIdeal.1557_0.90B1BH8AtSmfl9S
theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by
by_cases hx : x = 0
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case pos R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I hx : x = 0 ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β·
rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul]
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β·
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case pos R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I hx : x = 0 ⊒ IsNoetherian R₁ β†₯↑0
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul]
exact isNoetherian_zero
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul]
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I hx : Β¬x = 0 ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero
have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx
have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : IsNoetherian R₁ β†₯↑I hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx
rw [isNoetherian_iff] at hI ⊒
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : βˆ€ J ≀ I, FG ↑J hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 ⊒ βˆ€ J ≀ spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I, FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒
intro J hJ
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : βˆ€ J ≀ I, FG ↑J hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 J : FractionalIdeal R₁⁰ K hJ : J ≀ spanSingleton R₁⁰ ((algebraMap R₁ K) x)⁻¹ * I ⊒ FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ
rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : βˆ€ J ≀ I, FG ↑J hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 J : FractionalIdeal R₁⁰ K hJ : J * spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≀ I ⊒ FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ
obtain ⟨s, hs⟩ := hI _ hJ
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case neg.intro R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : βˆ€ J ≀ I, FG ↑J hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 J : FractionalIdeal R₁⁰ K hJ : J * spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≀ I s : Finset K hs : span R₁ ↑s = ↑(J * spanSingleton R₁⁰ ((algebraMap R₁ K) x)) ⊒ FG ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ
use s * {(algebraMap R₁ K x)⁻¹}
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
case h R : Type u_1 inst✝⁢ : CommRing R S : Submonoid R P : Type u_2 inst✝⁡ : CommRing P inst✝⁴ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝³ : CommRing R₁ K : Type u_4 inst✝² : Field K inst✝¹ : Algebra R₁ K frac : IsFractionRing R₁ K inst✝ : IsDomain R₁ x : R₁ I : FractionalIdeal R₁⁰ K hI : βˆ€ J ≀ I, FG ↑J hx : Β¬x = 0 h_gx : (algebraMap R₁ K) x β‰  0 h_spanx : spanSingleton R₁⁰ ((algebraMap R₁ K) x) β‰  0 J : FractionalIdeal R₁⁰ K hJ : J * spanSingleton R₁⁰ ((algebraMap R₁ K) x) ≀ I s : Finset K hs : span R₁ ↑s = ↑(J * spanSingleton R₁⁰ ((algebraMap R₁ K) x)) ⊒ span R₁ ↑(s * {((algebraMap R₁ K) x)⁻¹}) = ↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ use s * {(algebraMap R₁ K x)⁻¹}
rw [Finset.coe_mul, Finset.coe_singleton, ← span_mul_span, hs, ← coe_spanSingleton R₁⁰, ← coe_mul, mul_assoc, spanSingleton_mul_spanSingleton, mul_inv_cancel h_gx, spanSingleton_one, mul_one]
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ use s * {(algebraMap R₁ K x)⁻¹}
Mathlib.RingTheory.FractionalIdeal.1567_0.90B1BH8AtSmfl9S
theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K)
Mathlib_RingTheory_FractionalIdeal
R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K frac : IsFractionRing R₁ K inst✝¹ : IsDomain R₁ inst✝ : IsNoetherianRing R₁ I : FractionalIdeal R₁⁰ K ⊒ IsNoetherian R₁ β†₯↑I
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ use s * {(algebraMap R₁ K x)⁻¹} rw [Finset.coe_mul, Finset.coe_singleton, ← span_mul_span, hs, ← coe_spanSingleton R₁⁰, ← coe_mul, mul_assoc, spanSingleton_mul_spanSingleton, mul_inv_cancel h_gx, spanSingleton_one, mul_one] #align fractional_ideal.is_noetherian_span_singleton_inv_to_map_mul FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul /-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by
obtain ⟨d, J, _, rfl⟩ := exists_eq_spanSingleton_mul I
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by
Mathlib.RingTheory.FractionalIdeal.1586_0.90B1BH8AtSmfl9S
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I
Mathlib_RingTheory_FractionalIdeal
case intro.intro.intro R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K frac : IsFractionRing R₁ K inst✝¹ : IsDomain R₁ inst✝ : IsNoetherianRing R₁ d : R₁ J : Ideal R₁ left✝ : d β‰  0 ⊒ IsNoetherian R₁ β†₯↑(spanSingleton R₁⁰ ((algebraMap R₁ K) d)⁻¹ * ↑J)
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ use s * {(algebraMap R₁ K x)⁻¹} rw [Finset.coe_mul, Finset.coe_singleton, ← span_mul_span, hs, ← coe_spanSingleton R₁⁰, ← coe_mul, mul_assoc, spanSingleton_mul_spanSingleton, mul_inv_cancel h_gx, spanSingleton_one, mul_one] #align fractional_ideal.is_noetherian_span_singleton_inv_to_map_mul FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul /-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by obtain ⟨d, J, _, rfl⟩ := exists_eq_spanSingleton_mul I
apply isNoetherian_spanSingleton_inv_to_map_mul
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by obtain ⟨d, J, _, rfl⟩ := exists_eq_spanSingleton_mul I
Mathlib.RingTheory.FractionalIdeal.1586_0.90B1BH8AtSmfl9S
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I
Mathlib_RingTheory_FractionalIdeal
case intro.intro.intro.hI R : Type u_1 inst✝⁷ : CommRing R S : Submonoid R P : Type u_2 inst✝⁢ : CommRing P inst✝⁡ : Algebra R P loc : IsLocalization S P R₁ : Type u_3 inst✝⁴ : CommRing R₁ K : Type u_4 inst✝³ : Field K inst✝² : Algebra R₁ K frac : IsFractionRing R₁ K inst✝¹ : IsDomain R₁ inst✝ : IsNoetherianRing R₁ d : R₁ J : Ideal R₁ left✝ : d β‰  0 ⊒ IsNoetherian R₁ β†₯↑↑J
/- Copyright (c) 2020 Anne Baanen. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anne Baanen, Filippo A. E. Nuccio -/ import Mathlib.Algebra.BigOperators.Finprod import Mathlib.RingTheory.IntegralClosure import Mathlib.RingTheory.Localization.Integer import Mathlib.RingTheory.Localization.Submodule import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.PrincipalIdealDomain import Mathlib.Tactic.FieldSimp #align_import ring_theory.fractional_ideal from "leanprover-community/mathlib"@"ed90a7d327c3a5caf65a6faf7e8a0d63c4605df7" /-! # Fractional ideals This file defines fractional ideals of an integral domain and proves basic facts about them. ## Main definitions Let `S` be a submonoid of an integral domain `R`, `P` the localization of `R` at `S`, and `f` the natural ring hom from `R` to `P`. * `IsFractional` defines which `R`-submodules of `P` are fractional ideals * `FractionalIdeal S P` is the type of fractional ideals in `P` * a coercion `coeIdeal : Ideal R β†’ FractionalIdeal S P` * `CommSemiring (FractionalIdeal S P)` instance: the typical ideal operations generalized to fractional ideals * `Lattice (FractionalIdeal S P)` instance * `map` is the pushforward of a fractional ideal along an algebra morphism Let `K` be the localization of `R` at `R⁰ = R \ {0}` (i.e. the field of fractions). * `FractionalIdeal R⁰ K` is the type of fractional ideals in the field of fractions * `Div (FractionalIdeal R⁰ K)` instance: the ideal quotient `I / J` (typically written $I : J$, but a `:` operator cannot be defined) ## Main statements * `mul_left_mono` and `mul_right_mono` state that ideal multiplication is monotone * `mul_div_self_cancel_iff` states that `1 / I` is the inverse of `I` if one exists * `isNoetherian` states that every fractional ideal of a noetherian integral domain is noetherian ## Implementation notes Fractional ideals are considered equal when they contain the same elements, independent of the denominator `a : R` such that `a I βŠ† R`. Thus, we define `FractionalIdeal` to be the subtype of the predicate `IsFractional`, instead of having `FractionalIdeal` be a structure of which `a` is a field. Most definitions in this file specialize operations from submodules to fractional ideals, proving that the result of this operation is fractional if the input is fractional. Exceptions to this rule are defining `(+) := (βŠ”)` and `βŠ₯ := 0`, in order to re-use their respective proof terms. We can still use `simp` to show `↑I + ↑J = ↑(I + J)` and `↑βŠ₯ = ↑0`. Many results in fact do not need that `P` is a localization, only that `P` is an `R`-algebra. We omit the `IsLocalization` parameter whenever this is practical. Similarly, we don't assume that the localization is a field until we need it to define ideal quotients. When this assumption is needed, we replace `S` with `R⁰`, making the localization a field. ## References * https://en.wikipedia.org/wiki/Fractional_ideal ## Tags fractional ideal, fractional ideals, invertible ideal -/ open IsLocalization open Pointwise open nonZeroDivisors section Defs variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] variable (S) /-- A submodule `I` is a fractional ideal if `a I βŠ† R` for some `a β‰  0`. -/ def IsFractional (I : Submodule R P) := βˆƒ a ∈ S, βˆ€ b ∈ I, IsInteger R (a β€’ b) #align is_fractional IsFractional variable (P) /-- The fractional ideals of a domain `R` are ideals of `R` divided by some `a ∈ R`. More precisely, let `P` be a localization of `R` at some submonoid `S`, then a fractional ideal `I βŠ† P` is an `R`-submodule of `P`, such that there is a nonzero `a : R` with `a I βŠ† R`. -/ def FractionalIdeal := { I : Submodule R P // IsFractional S I } #align fractional_ideal FractionalIdeal end Defs namespace FractionalIdeal open Set open Submodule variable {R : Type*} [CommRing R] {S : Submonoid R} {P : Type*} [CommRing P] variable [Algebra R P] [loc : IsLocalization S P] /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This implements the coercion `FractionalIdeal S P β†’ Submodule R P`. -/ @[coe] def coeToSubmodule (I : FractionalIdeal S P) : Submodule R P := I.val /-- Map a fractional ideal `I` to a submodule by forgetting that `βˆƒ a, a I βŠ† R`. This coercion is typically called `coeToSubmodule` in lemma names (or `coe` when the coercion is clear from the context), not to be confused with `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P` (which we use to define `coe : Ideal R β†’ FractionalIdeal S P`). -/ instance : CoeOut (FractionalIdeal S P) (Submodule R P) := ⟨coeToSubmodule⟩ protected theorem isFractional (I : FractionalIdeal S P) : IsFractional S (I : Submodule R P) := I.prop #align fractional_ideal.is_fractional FractionalIdeal.isFractional section SetLike instance : SetLike (FractionalIdeal S P) P where coe I := ↑(I : Submodule R P) coe_injective' := SetLike.coe_injective.comp Subtype.coe_injective @[simp] theorem mem_coe {I : FractionalIdeal S P} {x : P} : x ∈ (I : Submodule R P) ↔ x ∈ I := Iff.rfl #align fractional_ideal.mem_coe FractionalIdeal.mem_coe @[ext] theorem ext {I J : FractionalIdeal S P} : (βˆ€ x, x ∈ I ↔ x ∈ J) β†’ I = J := SetLike.ext #align fractional_ideal.ext FractionalIdeal.ext /-- Copy of a `FractionalIdeal` with a new underlying set equal to the old one. Useful to fix definitional equalities. -/ protected def copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : FractionalIdeal S P := ⟨Submodule.copy p s hs, by convert p.isFractional ext simp only [hs] rfl⟩ #align fractional_ideal.copy FractionalIdeal.copy @[simp] theorem coe_copy (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : ↑(p.copy s hs) = s := rfl #align fractional_ideal.coe_copy FractionalIdeal.coe_copy theorem coe_eq (p : FractionalIdeal S P) (s : Set P) (hs : s = ↑p) : p.copy s hs = p := SetLike.coe_injective hs #align fractional_ideal.coe_eq FractionalIdeal.coe_eq end SetLike -- Porting note: this seems to be needed a lot more than in Lean 3 @[simp] theorem val_eq_coe (I : FractionalIdeal S P) : I.val = I := rfl #align fractional_ideal.val_eq_coe FractionalIdeal.val_eq_coe -- Porting note: had to rephrase this to make it clear to `simp` what was going on. @[simp, norm_cast] theorem coe_mk (I : Submodule R P) (hI : IsFractional S I) : coeToSubmodule ⟨I, hI⟩ = I := rfl #align fractional_ideal.coe_mk FractionalIdeal.coe_mk -- Porting note: added this lemma because Lean can't see through the composition of coercions. theorem coeToSet_coeToSubmodule (I : FractionalIdeal S P) : ((I : Submodule R P) : Set P) = I := rfl /-! Transfer instances from `Submodule R P` to `FractionalIdeal S P`. -/ instance (I : FractionalIdeal S P) : Module R I := Submodule.module (I : Submodule R P) theorem coeToSubmodule_injective : Function.Injective (fun (I : FractionalIdeal S P) ↦ (I : Submodule R P)) := Subtype.coe_injective #align fractional_ideal.coe_to_submodule_injective FractionalIdeal.coeToSubmodule_injective theorem coeToSubmodule_inj {I J : FractionalIdeal S P} : (I : Submodule R P) = J ↔ I = J := coeToSubmodule_injective.eq_iff #align fractional_ideal.coe_to_submodule_inj FractionalIdeal.coeToSubmodule_inj theorem isFractional_of_le_one (I : Submodule R P) (h : I ≀ 1) : IsFractional S I := by use 1, S.one_mem intro b hb rw [one_smul] obtain ⟨b', b'_mem, rfl⟩ := h hb exact Set.mem_range_self b' #align fractional_ideal.is_fractional_of_le_one FractionalIdeal.isFractional_of_le_one theorem isFractional_of_le {I : Submodule R P} {J : FractionalIdeal S P} (hIJ : I ≀ J) : IsFractional S I := by obtain ⟨a, a_mem, ha⟩ := J.isFractional use a, a_mem intro b b_mem exact ha b (hIJ b_mem) #align fractional_ideal.is_fractional_of_le FractionalIdeal.isFractional_of_le /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is the function that implements the coercion `Ideal R β†’ FractionalIdeal S P`. -/ @[coe] def coeIdeal (I : Ideal R) : FractionalIdeal S P := ⟨coeSubmodule P I, isFractional_of_le_one _ <| by simpa using coeSubmodule_mono P (le_top : I ≀ ⊀)⟩ -- Is a `CoeTC` rather than `Coe` to speed up failing inference, see library note [use has_coe_t] /-- Map an ideal `I` to a fractional ideal by forgetting `I` is integral. This is a bundled version of `IsLocalization.coeSubmodule : Ideal R β†’ Submodule R P`, which is not to be confused with the `coe : FractionalIdeal S P β†’ Submodule R P`, also called `coeToSubmodule` in theorem names. This map is available as a ring hom, called `FractionalIdeal.coeIdealHom`. -/ instance : CoeTC (Ideal R) (FractionalIdeal S P) := ⟨fun I => coeIdeal I⟩ @[simp, norm_cast] theorem coe_coeIdeal (I : Ideal R) : ((I : FractionalIdeal S P) : Submodule R P) = coeSubmodule P I := rfl #align fractional_ideal.coe_coe_ideal FractionalIdeal.coe_coeIdeal variable (S) @[simp] theorem mem_coeIdeal {x : P} {I : Ideal R} : x ∈ (I : FractionalIdeal S P) ↔ βˆƒ x', x' ∈ I ∧ algebraMap R P x' = x := mem_coeSubmodule _ _ #align fractional_ideal.mem_coe_ideal FractionalIdeal.mem_coeIdeal theorem mem_coeIdeal_of_mem {x : R} {I : Ideal R} (hx : x ∈ I) : algebraMap R P x ∈ (I : FractionalIdeal S P) := (mem_coeIdeal S).mpr ⟨x, hx, rfl⟩ #align fractional_ideal.mem_coe_ideal_of_mem FractionalIdeal.mem_coeIdeal_of_mem theorem coeIdeal_le_coeIdeal' [IsLocalization S P] (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) ≀ J ↔ I ≀ J := coeSubmodule_le_coeSubmodule h #align fractional_ideal.coe_ideal_le_coe_ideal' FractionalIdeal.coeIdeal_le_coeIdeal' @[simp] theorem coeIdeal_le_coeIdeal (K : Type*) [CommRing K] [Algebra R K] [IsFractionRing R K] {I J : Ideal R} : (I : FractionalIdeal R⁰ K) ≀ J ↔ I ≀ J := IsFractionRing.coeSubmodule_le_coeSubmodule #align fractional_ideal.coe_ideal_le_coe_ideal FractionalIdeal.coeIdeal_le_coeIdeal instance : Zero (FractionalIdeal S P) := ⟨(0 : Ideal R)⟩ @[simp] theorem mem_zero_iff {x : P} : x ∈ (0 : FractionalIdeal S P) ↔ x = 0 := ⟨fun ⟨x', x'_mem_zero, x'_eq_x⟩ => by have x'_eq_zero : x' = 0 := x'_mem_zero simp [x'_eq_x.symm, x'_eq_zero], fun hx => ⟨0, rfl, by simp [hx]⟩⟩ #align fractional_ideal.mem_zero_iff FractionalIdeal.mem_zero_iff variable {S} @[simp, norm_cast] theorem coe_zero : ↑(0 : FractionalIdeal S P) = (βŠ₯ : Submodule R P) := Submodule.ext fun _ => mem_zero_iff S #align fractional_ideal.coe_zero FractionalIdeal.coe_zero @[simp, norm_cast] theorem coeIdeal_bot : ((βŠ₯ : Ideal R) : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.coe_ideal_bot FractionalIdeal.coeIdeal_bot variable (P) @[simp] theorem exists_mem_algebraMap_eq {x : R} {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (βˆƒ x', x' ∈ I ∧ algebraMap R P x' = algebraMap R P x) ↔ x ∈ I := ⟨fun ⟨_, hx', Eq⟩ => IsLocalization.injective _ h Eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.exists_mem_to_map_eq FractionalIdeal.exists_mem_algebraMap_eq variable {P} theorem coeIdeal_injective' (h : S ≀ nonZeroDivisors R) : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal S P)) := fun _ _ h' => ((coeIdeal_le_coeIdeal' S h).mp h'.le).antisymm ((coeIdeal_le_coeIdeal' S h).mp h'.ge) #align fractional_ideal.coe_ideal_injective' FractionalIdeal.coeIdeal_injective' theorem coeIdeal_inj' (h : S ≀ nonZeroDivisors R) {I J : Ideal R} : (I : FractionalIdeal S P) = J ↔ I = J := (coeIdeal_injective' h).eq_iff #align fractional_ideal.coe_ideal_inj' FractionalIdeal.coeIdeal_inj' -- Porting note: doesn't need to be @[simp] because it can be proved by coeIdeal_eq_zero theorem coeIdeal_eq_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) = 0 ↔ I = (βŠ₯ : Ideal R) := coeIdeal_inj' h #align fractional_ideal.coe_ideal_eq_zero' FractionalIdeal.coeIdeal_eq_zero' theorem coeIdeal_ne_zero' {I : Ideal R} (h : S ≀ nonZeroDivisors R) : (I : FractionalIdeal S P) β‰  0 ↔ I β‰  (βŠ₯ : Ideal R) := not_iff_not.mpr <| coeIdeal_eq_zero' h #align fractional_ideal.coe_ideal_ne_zero' FractionalIdeal.coeIdeal_ne_zero' theorem coeToSubmodule_eq_bot {I : FractionalIdeal S P} : (I : Submodule R P) = βŠ₯ ↔ I = 0 := ⟨fun h => coeToSubmodule_injective (by simp [h]), fun h => by simp [h]⟩ #align fractional_ideal.coe_to_submodule_eq_bot FractionalIdeal.coeToSubmodule_eq_bot theorem coeToSubmodule_ne_bot {I : FractionalIdeal S P} : ↑I β‰  (βŠ₯ : Submodule R P) ↔ I β‰  0 := not_iff_not.mpr coeToSubmodule_eq_bot #align fractional_ideal.coe_to_submodule_ne_bot FractionalIdeal.coeToSubmodule_ne_bot instance : Inhabited (FractionalIdeal S P) := ⟨0⟩ instance : One (FractionalIdeal S P) := ⟨(⊀ : Ideal R)⟩ variable (S) @[simp, norm_cast] theorem coeIdeal_top : ((⊀ : Ideal R) : FractionalIdeal S P) = 1 := rfl #align fractional_ideal.coe_ideal_top FractionalIdeal.coeIdeal_top theorem mem_one_iff {x : P} : x ∈ (1 : FractionalIdeal S P) ↔ βˆƒ x' : R, algebraMap R P x' = x := Iff.intro (fun ⟨x', _, h⟩ => ⟨x', h⟩) fun ⟨x', h⟩ => ⟨x', ⟨⟩, h⟩ #align fractional_ideal.mem_one_iff FractionalIdeal.mem_one_iff theorem coe_mem_one (x : R) : algebraMap R P x ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨x, rfl⟩ #align fractional_ideal.coe_mem_one FractionalIdeal.coe_mem_one theorem one_mem_one : (1 : P) ∈ (1 : FractionalIdeal S P) := (mem_one_iff S).mpr ⟨1, RingHom.map_one _⟩ #align fractional_ideal.one_mem_one FractionalIdeal.one_mem_one variable {S} /-- `(1 : FractionalIdeal S P)` is defined as the R-submodule `f(R) ≀ P`. However, this is not definitionally equal to `1 : Submodule R P`, which is proved in the actual `simp` lemma `coe_one`. -/ theorem coe_one_eq_coeSubmodule_top : ↑(1 : FractionalIdeal S P) = coeSubmodule P (⊀ : Ideal R) := rfl #align fractional_ideal.coe_one_eq_coe_submodule_top FractionalIdeal.coe_one_eq_coeSubmodule_top @[simp, norm_cast] theorem coe_one : (↑(1 : FractionalIdeal S P) : Submodule R P) = 1 := by rw [coe_one_eq_coeSubmodule_top, coeSubmodule_top] #align fractional_ideal.coe_one FractionalIdeal.coe_one section Lattice /-! ### `Lattice` section Defines the order on fractional ideals as inclusion of their underlying sets, and ports the lattice structure on submodules to fractional ideals. -/ @[simp] theorem coe_le_coe {I J : FractionalIdeal S P} : (I : Submodule R P) ≀ (J : Submodule R P) ↔ I ≀ J := Iff.rfl #align fractional_ideal.coe_le_coe FractionalIdeal.coe_le_coe theorem zero_le (I : FractionalIdeal S P) : 0 ≀ I := by intro x hx -- Porting note: changed the proof from convert; simp into rw; exact rw [(mem_zero_iff _).mp hx] exact zero_mem (I : Submodule R P) #align fractional_ideal.zero_le FractionalIdeal.zero_le instance orderBot : OrderBot (FractionalIdeal S P) where bot := 0 bot_le := zero_le #align fractional_ideal.order_bot FractionalIdeal.orderBot @[simp] theorem bot_eq_zero : (βŠ₯ : FractionalIdeal S P) = 0 := rfl #align fractional_ideal.bot_eq_zero FractionalIdeal.bot_eq_zero @[simp] theorem le_zero_iff {I : FractionalIdeal S P} : I ≀ 0 ↔ I = 0 := le_bot_iff #align fractional_ideal.le_zero_iff FractionalIdeal.le_zero_iff theorem eq_zero_iff {I : FractionalIdeal S P} : I = 0 ↔ βˆ€ x ∈ I, x = (0 : P) := ⟨fun h x hx => by simpa [h, mem_zero_iff] using hx, fun h => le_bot_iff.mp fun x hx => (mem_zero_iff S).mpr (h x hx)⟩ #align fractional_ideal.eq_zero_iff FractionalIdeal.eq_zero_iff theorem _root_.IsFractional.sup {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I βŠ” J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by rcases mem_sup.mp hb with ⟨bI, hbI, bJ, hbJ, rfl⟩ rw [smul_add] apply isInteger_add Β· rw [mul_smul, smul_comm] exact isInteger_smul (hI bI hbI) Β· rw [mul_smul] exact isInteger_smul (hJ bJ hbJ)⟩ #align is_fractional.sup IsFractional.sup theorem _root_.IsFractional.inf_right {I : Submodule R P} : IsFractional S I β†’ βˆ€ J, IsFractional S (I βŠ“ J) | ⟨aI, haI, hI⟩, J => ⟨aI, haI, fun b hb => by rcases mem_inf.mp hb with ⟨hbI, _⟩ exact hI b hbI⟩ #align is_fractional.inf_right IsFractional.inf_right instance : Inf (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ“ J, I.isFractional.inf_right J⟩⟩ @[simp, norm_cast] theorem coe_inf (I J : FractionalIdeal S P) : ↑(I βŠ“ J) = (I βŠ“ J : Submodule R P) := rfl #align fractional_ideal.coe_inf FractionalIdeal.coe_inf instance : Sup (FractionalIdeal S P) := ⟨fun I J => ⟨I βŠ” J, I.isFractional.sup J.isFractional⟩⟩ @[norm_cast] theorem coe_sup (I J : FractionalIdeal S P) : ↑(I βŠ” J) = (I βŠ” J : Submodule R P) := rfl #align fractional_ideal.coe_sup FractionalIdeal.coe_sup instance lattice : Lattice (FractionalIdeal S P) := Function.Injective.lattice _ Subtype.coe_injective coe_sup coe_inf #align fractional_ideal.lattice FractionalIdeal.lattice instance : SemilatticeSup (FractionalIdeal S P) := { FractionalIdeal.lattice with } end Lattice section Semiring instance : Add (FractionalIdeal S P) := ⟨(Β· βŠ” Β·)⟩ @[simp] theorem sup_eq_add (I J : FractionalIdeal S P) : I βŠ” J = I + J := rfl #align fractional_ideal.sup_eq_add FractionalIdeal.sup_eq_add @[simp, norm_cast] theorem coe_add (I J : FractionalIdeal S P) : (↑(I + J) : Submodule R P) = I + J := rfl #align fractional_ideal.coe_add FractionalIdeal.coe_add @[simp, norm_cast] theorem coeIdeal_sup (I J : Ideal R) : ↑(I βŠ” J) = (I + J : FractionalIdeal S P) := coeToSubmodule_injective <| coeSubmodule_sup _ _ _ #align fractional_ideal.coe_ideal_sup FractionalIdeal.coeIdeal_sup theorem _root_.IsFractional.nsmul {I : Submodule R P} : βˆ€ n : β„•, IsFractional S I β†’ IsFractional S (n β€’ I : Submodule R P) | 0, _ => by rw [zero_smul] convert ((0 : Ideal R) : FractionalIdeal S P).isFractional simp | n + 1, h => by rw [succ_nsmul] exact h.sup (IsFractional.nsmul n h) #align is_fractional.nsmul IsFractional.nsmul instance : SMul β„• (FractionalIdeal S P) where smul n I := ⟨n β€’ ↑I, I.isFractional.nsmul n⟩ @[norm_cast] theorem coe_nsmul (n : β„•) (I : FractionalIdeal S P) : (↑(n β€’ I) : Submodule R P) = n β€’ (I : Submodule R P) := rfl #align fractional_ideal.coe_nsmul FractionalIdeal.coe_nsmul theorem _root_.IsFractional.mul {I J : Submodule R P} : IsFractional S I β†’ IsFractional S J β†’ IsFractional S (I * J : Submodule R P) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩ => ⟨aI * aJ, S.mul_mem haI haJ, fun b hb => by refine Submodule.mul_induction_on hb ?_ ?_ Β· intro m hm n hn obtain ⟨n', hn'⟩ := hJ n hn rw [mul_smul, mul_comm m, ← smul_mul_assoc, ← hn', ← Algebra.smul_def] apply hI exact Submodule.smul_mem _ _ hm Β· intro x y hx hy rw [smul_add] apply isInteger_add hx hy⟩ #align is_fractional.mul IsFractional.mul theorem _root_.IsFractional.pow {I : Submodule R P} (h : IsFractional S I) : βˆ€ n : β„•, IsFractional S (I ^ n : Submodule R P) | 0 => isFractional_of_le_one _ (pow_zero _).le | n + 1 => (pow_succ I n).symm β–Έ h.mul (IsFractional.pow h n) #align is_fractional.pow IsFractional.pow /-- `FractionalIdeal.mul` is the product of two fractional ideals, used to define the `Mul` instance. This is only an auxiliary definition: the preferred way of writing `I.mul J` is `I * J`. Elaborated terms involving `FractionalIdeal` tend to grow quite large, so by making definitions irreducible, we hope to avoid deep unfolds. -/ irreducible_def mul (lemma := mul_def') (I J : FractionalIdeal S P) : FractionalIdeal S P := ⟨I * J, I.isFractional.mul J.isFractional⟩ #align fractional_ideal.mul FractionalIdeal.mul -- local attribute [semireducible] mul instance : Mul (FractionalIdeal S P) := ⟨fun I J => mul I J⟩ @[simp] theorem mul_eq_mul (I J : FractionalIdeal S P) : mul I J = I * J := rfl #align fractional_ideal.mul_eq_mul FractionalIdeal.mul_eq_mul theorem mul_def (I J : FractionalIdeal S P) : I * J = ⟨I * J, I.isFractional.mul J.isFractional⟩ := by simp only [← mul_eq_mul, mul] #align fractional_ideal.mul_def FractionalIdeal.mul_def @[simp, norm_cast] theorem coe_mul (I J : FractionalIdeal S P) : (↑(I * J) : Submodule R P) = I * J := by simp only [mul_def, coe_mk] #align fractional_ideal.coe_mul FractionalIdeal.coe_mul @[simp, norm_cast] theorem coeIdeal_mul (I J : Ideal R) : (↑(I * J) : FractionalIdeal S P) = I * J := by simp only [mul_def] exact coeToSubmodule_injective (coeSubmodule_mul _ _ _) #align fractional_ideal.coe_ideal_mul FractionalIdeal.coeIdeal_mul theorem mul_left_mono (I : FractionalIdeal S P) : Monotone (I * Β·) := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul hx (h hy) #align fractional_ideal.mul_left_mono FractionalIdeal.mul_left_mono theorem mul_right_mono (I : FractionalIdeal S P) : Monotone fun J => J * I := by intro J J' h simp only [mul_def] exact mul_le.mpr fun x hx y hy => mul_mem_mul (h hx) hy #align fractional_ideal.mul_right_mono FractionalIdeal.mul_right_mono theorem mul_mem_mul {I J : FractionalIdeal S P} {i j : P} (hi : i ∈ I) (hj : j ∈ J) : i * j ∈ I * J := by simp only [mul_def] exact Submodule.mul_mem_mul hi hj #align fractional_ideal.mul_mem_mul FractionalIdeal.mul_mem_mul theorem mul_le {I J K : FractionalIdeal S P} : I * J ≀ K ↔ βˆ€ i ∈ I, βˆ€ j ∈ J, i * j ∈ K := by simp only [mul_def] exact Submodule.mul_le #align fractional_ideal.mul_le FractionalIdeal.mul_le instance : Pow (FractionalIdeal S P) β„• := ⟨fun I n => ⟨(I : Submodule R P) ^ n, I.isFractional.pow n⟩⟩ @[simp, norm_cast] theorem coe_pow (I : FractionalIdeal S P) (n : β„•) : ↑(I ^ n) = (I : Submodule R P) ^ n := rfl #align fractional_ideal.coe_pow FractionalIdeal.coe_pow @[elab_as_elim] protected theorem mul_induction_on {I J : FractionalIdeal S P} {C : P β†’ Prop} {r : P} (hr : r ∈ I * J) (hm : βˆ€ i ∈ I, βˆ€ j ∈ J, C (i * j)) (ha : βˆ€ x y, C x β†’ C y β†’ C (x + y)) : C r := by simp only [mul_def] at hr exact Submodule.mul_induction_on hr hm ha #align fractional_ideal.mul_induction_on FractionalIdeal.mul_induction_on instance : NatCast (FractionalIdeal S P) := ⟨Nat.unaryCast⟩ theorem coe_nat_cast (n : β„•) : ((n : FractionalIdeal S P) : Submodule R P) = n := show ((n.unaryCast : FractionalIdeal S P) : Submodule R P) = n by induction n <;> simp [*, Nat.unaryCast] #align fractional_ideal.coe_nat_cast FractionalIdeal.coe_nat_cast instance commSemiring : CommSemiring (FractionalIdeal S P) := Function.Injective.commSemiring _ Subtype.coe_injective coe_zero coe_one coe_add coe_mul (fun _ _ => coe_nsmul _ _) coe_pow coe_nat_cast variable (S P) /-- `FractionalIdeal.coeToSubmodule` as a bundled `RingHom`. -/ @[simps] def coeSubmoduleHom : FractionalIdeal S P β†’+* Submodule R P where toFun := coeToSubmodule map_one' := coe_one map_mul' := coe_mul map_zero' := coe_zero (S := S) map_add' := coe_add #align fractional_ideal.coe_submodule_hom FractionalIdeal.coeSubmoduleHom variable {S P} section Order theorem add_le_add_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' + I ≀ J' + J := sup_le_sup_left hIJ J' #align fractional_ideal.add_le_add_left FractionalIdeal.add_le_add_left theorem mul_le_mul_left {I J : FractionalIdeal S P} (hIJ : I ≀ J) (J' : FractionalIdeal S P) : J' * I ≀ J' * J := mul_le.mpr fun _ hk _ hj => mul_mem_mul hk (hIJ hj) #align fractional_ideal.mul_le_mul_left FractionalIdeal.mul_le_mul_left theorem le_self_mul_self {I : FractionalIdeal S P} (hI : 1 ≀ I) : I ≀ I * I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.le_self_mul_self FractionalIdeal.le_self_mul_self theorem mul_self_le_self {I : FractionalIdeal S P} (hI : I ≀ 1) : I * I ≀ I := by convert mul_left_mono I hI exact (mul_one I).symm #align fractional_ideal.mul_self_le_self FractionalIdeal.mul_self_le_self theorem coeIdeal_le_one {I : Ideal R} : (I : FractionalIdeal S P) ≀ 1 := fun _ hx => let ⟨y, _, hy⟩ := (mem_coeIdeal S).mp hx (mem_one_iff S).mpr ⟨y, hy⟩ #align fractional_ideal.coe_ideal_le_one FractionalIdeal.coeIdeal_le_one theorem le_one_iff_exists_coeIdeal {J : FractionalIdeal S P} : J ≀ (1 : FractionalIdeal S P) ↔ βˆƒ I : Ideal R, ↑I = J := by constructor Β· intro hJ refine' ⟨⟨⟨⟨{ x : R | algebraMap R P x ∈ J }, _⟩, _⟩, _⟩, _⟩ Β· intro a b ha hb rw [mem_setOf, RingHom.map_add] exact J.val.add_mem ha hb Β· rw [mem_setOf, RingHom.map_zero] exact J.val.zero_mem Β· intro c x hx rw [smul_eq_mul, mem_setOf, RingHom.map_mul, ← Algebra.smul_def] exact J.val.smul_mem c hx Β· ext x constructor Β· rintro ⟨y, hy, eq_y⟩ rwa [← eq_y] Β· intro hx obtain ⟨y, rfl⟩ := (mem_one_iff S).mp (hJ hx) exact mem_setOf.mpr ⟨y, hx, rfl⟩ Β· rintro ⟨I, hI⟩ rw [← hI] apply coeIdeal_le_one #align fractional_ideal.le_one_iff_exists_coe_ideal FractionalIdeal.le_one_iff_exists_coeIdeal @[simp] theorem one_le {I : FractionalIdeal S P} : 1 ≀ I ↔ (1 : P) ∈ I := by rw [← coe_le_coe, coe_one, Submodule.one_le, mem_coe] #align fractional_ideal.one_le FractionalIdeal.one_le variable (S P) /-- `coeIdealHom (S : Submonoid R) P` is `(↑) : Ideal R β†’ FractionalIdeal S P` as a ring hom -/ @[simps] def coeIdealHom : Ideal R β†’+* FractionalIdeal S P where toFun := coeIdeal map_add' := coeIdeal_sup map_mul' := coeIdeal_mul map_one' := by rw [Ideal.one_eq_top, coeIdeal_top] map_zero' := coeIdeal_bot #align fractional_ideal.coe_ideal_hom FractionalIdeal.coeIdealHom theorem coeIdeal_pow (I : Ideal R) (n : β„•) : ↑(I ^ n) = (I : FractionalIdeal S P) ^ n := (coeIdealHom S P).map_pow _ n #align fractional_ideal.coe_ideal_pow FractionalIdeal.coeIdeal_pow open BigOperators theorem coeIdeal_finprod [IsLocalization S P] {Ξ± : Sort*} {f : Ξ± β†’ Ideal R} (hS : S ≀ nonZeroDivisors R) : ((∏ᢠ a : Ξ±, f a : Ideal R) : FractionalIdeal S P) = ∏ᢠ a : Ξ±, (f a : FractionalIdeal S P) := MonoidHom.map_finprod_of_injective (coeIdealHom S P).toMonoidHom (coeIdeal_injective' hS) f #align fractional_ideal.coe_ideal_finprod FractionalIdeal.coeIdeal_finprod end Order variable {P' : Type*} [CommRing P'] [Algebra R P'] [loc' : IsLocalization S P'] variable {P'' : Type*} [CommRing P''] [Algebra R P''] [loc'' : IsLocalization S P''] theorem _root_.IsFractional.map (g : P →ₐ[R] P') {I : Submodule R P} : IsFractional S I β†’ IsFractional S (Submodule.map g.toLinearMap I) | ⟨a, a_nonzero, hI⟩ => ⟨a, a_nonzero, fun b hb => by obtain ⟨b', b'_mem, hb'⟩ := Submodule.mem_map.mp hb rw [AlgHom.toLinearMap_apply] at hb' obtain ⟨x, hx⟩ := hI b' b'_mem use x rw [← g.commutes, hx, g.map_smul, hb']⟩ #align is_fractional.map IsFractional.map /-- `I.map g` is the pushforward of the fractional ideal `I` along the algebra morphism `g` -/ def map (g : P →ₐ[R] P') : FractionalIdeal S P β†’ FractionalIdeal S P' := fun I => ⟨Submodule.map g.toLinearMap I, I.isFractional.map g⟩ #align fractional_ideal.map FractionalIdeal.map @[simp, norm_cast] theorem coe_map (g : P →ₐ[R] P') (I : FractionalIdeal S P) : ↑(map g I) = Submodule.map g.toLinearMap I := rfl #align fractional_ideal.coe_map FractionalIdeal.coe_map @[simp] theorem mem_map {I : FractionalIdeal S P} {g : P →ₐ[R] P'} {y : P'} : y ∈ I.map g ↔ βˆƒ x, x ∈ I ∧ g x = y := Submodule.mem_map #align fractional_ideal.mem_map FractionalIdeal.mem_map variable (I J : FractionalIdeal S P) (g : P →ₐ[R] P') @[simp] theorem map_id : I.map (AlgHom.id _ _) = I := coeToSubmodule_injective (Submodule.map_id (I : Submodule R P)) #align fractional_ideal.map_id FractionalIdeal.map_id @[simp] theorem map_comp (g' : P' →ₐ[R] P'') : I.map (g'.comp g) = (I.map g).map g' := coeToSubmodule_injective (Submodule.map_comp g.toLinearMap g'.toLinearMap I) #align fractional_ideal.map_comp FractionalIdeal.map_comp @[simp, norm_cast] theorem map_coeIdeal (I : Ideal R) : (I : FractionalIdeal S P).map g = I := by ext x simp only [mem_coeIdeal] constructor Β· rintro ⟨_, ⟨y, hy, rfl⟩, rfl⟩ exact ⟨y, hy, (g.commutes y).symm⟩ Β· rintro ⟨y, hy, rfl⟩ exact ⟨_, ⟨y, hy, rfl⟩, g.commutes y⟩ #align fractional_ideal.map_coe_ideal FractionalIdeal.map_coeIdeal @[simp] theorem map_one : (1 : FractionalIdeal S P).map g = 1 := map_coeIdeal g ⊀ #align fractional_ideal.map_one FractionalIdeal.map_one @[simp] theorem map_zero : (0 : FractionalIdeal S P).map g = 0 := map_coeIdeal g 0 #align fractional_ideal.map_zero FractionalIdeal.map_zero @[simp] theorem map_add : (I + J).map g = I.map g + J.map g := coeToSubmodule_injective (Submodule.map_sup _ _ _) #align fractional_ideal.map_add FractionalIdeal.map_add @[simp] theorem map_mul : (I * J).map g = I.map g * J.map g := by simp only [mul_def] exact coeToSubmodule_injective (Submodule.map_mul _ _ _) #align fractional_ideal.map_mul FractionalIdeal.map_mul @[simp] theorem map_map_symm (g : P ≃ₐ[R] P') : (I.map (g : P →ₐ[R] P')).map (g.symm : P' →ₐ[R] P) = I := by rw [← map_comp, g.symm_comp, map_id] #align fractional_ideal.map_map_symm FractionalIdeal.map_map_symm @[simp] theorem map_symm_map (I : FractionalIdeal S P') (g : P ≃ₐ[R] P') : (I.map (g.symm : P' →ₐ[R] P)).map (g : P →ₐ[R] P') = I := by rw [← map_comp, g.comp_symm, map_id] #align fractional_ideal.map_symm_map FractionalIdeal.map_symm_map theorem map_mem_map {f : P →ₐ[R] P'} (h : Function.Injective f) {x : P} {I : FractionalIdeal S P} : f x ∈ map f I ↔ x ∈ I := mem_map.trans ⟨fun ⟨_, hx', x'_eq⟩ => h x'_eq β–Έ hx', fun h => ⟨x, h, rfl⟩⟩ #align fractional_ideal.map_mem_map FractionalIdeal.map_mem_map theorem map_injective (f : P →ₐ[R] P') (h : Function.Injective f) : Function.Injective (map f : FractionalIdeal S P β†’ FractionalIdeal S P') := fun _ _ hIJ => ext fun _ => (map_mem_map h).symm.trans (hIJ.symm β–Έ map_mem_map h) #align fractional_ideal.map_injective FractionalIdeal.map_injective /-- If `g` is an equivalence, `map g` is an isomorphism -/ def mapEquiv (g : P ≃ₐ[R] P') : FractionalIdeal S P ≃+* FractionalIdeal S P' where toFun := map g invFun := map g.symm map_add' I J := map_add I J _ map_mul' I J := map_mul I J _ left_inv I := by rw [← map_comp, AlgEquiv.symm_comp, map_id] right_inv I := by rw [← map_comp, AlgEquiv.comp_symm, map_id] #align fractional_ideal.map_equiv FractionalIdeal.mapEquiv @[simp] theorem coeFun_mapEquiv (g : P ≃ₐ[R] P') : (mapEquiv g : FractionalIdeal S P β†’ FractionalIdeal S P') = map g := rfl #align fractional_ideal.coe_fun_map_equiv FractionalIdeal.coeFun_mapEquiv @[simp] theorem mapEquiv_apply (g : P ≃ₐ[R] P') (I : FractionalIdeal S P) : mapEquiv g I = map (↑g) I := rfl #align fractional_ideal.map_equiv_apply FractionalIdeal.mapEquiv_apply @[simp] theorem mapEquiv_symm (g : P ≃ₐ[R] P') : ((mapEquiv g).symm : FractionalIdeal S P' ≃+* _) = mapEquiv g.symm := rfl #align fractional_ideal.map_equiv_symm FractionalIdeal.mapEquiv_symm @[simp] theorem mapEquiv_refl : mapEquiv AlgEquiv.refl = RingEquiv.refl (FractionalIdeal S P) := RingEquiv.ext fun x => by simp #align fractional_ideal.map_equiv_refl FractionalIdeal.mapEquiv_refl theorem isFractional_span_iff {s : Set P} : IsFractional S (span R s) ↔ βˆƒ a ∈ S, βˆ€ b : P, b ∈ s β†’ IsInteger R (a β€’ b) := ⟨fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => h b (subset_span hb)⟩, fun ⟨a, a_mem, h⟩ => ⟨a, a_mem, fun b hb => span_induction hb h (by rw [smul_zero] exact isInteger_zero) (fun x y hx hy => by rw [smul_add] exact isInteger_add hx hy) fun s x hx => by rw [smul_comm] exact isInteger_smul hx⟩⟩ #align fractional_ideal.is_fractional_span_iff FractionalIdeal.isFractional_span_iff theorem isFractional_of_fg {I : Submodule R P} (hI : I.FG) : IsFractional S I := by rcases hI with ⟨I, rfl⟩ rcases exist_integer_multiples_of_finset S I with ⟨⟨s, hs1⟩, hs⟩ rw [isFractional_span_iff] exact ⟨s, hs1, hs⟩ #align fractional_ideal.is_fractional_of_fg FractionalIdeal.isFractional_of_fg theorem mem_span_mul_finite_of_mem_mul {I J : FractionalIdeal S P} {x : P} (hx : x ∈ I * J) : βˆƒ T T' : Finset P, (T : Set P) βŠ† I ∧ (T' : Set P) βŠ† J ∧ x ∈ span R (T * T' : Set P) := Submodule.mem_span_mul_finite_of_mem_mul (by simpa using mem_coe.mpr hx) #align fractional_ideal.mem_span_mul_finite_of_mem_mul FractionalIdeal.mem_span_mul_finite_of_mem_mul variable (S) theorem coeIdeal_fg (inj : Function.Injective (algebraMap R P)) (I : Ideal R) : FG ((I : FractionalIdeal S P) : Submodule R P) ↔ I.FG := coeSubmodule_fg _ inj _ #align fractional_ideal.coe_ideal_fg FractionalIdeal.coeIdeal_fg variable {S} theorem fg_unit (I : (FractionalIdeal S P)Λ£) : FG (I : Submodule R P) := Submodule.fg_unit <| Units.map (coeSubmoduleHom S P).toMonoidHom I #align fractional_ideal.fg_unit FractionalIdeal.fg_unit theorem fg_of_isUnit (I : FractionalIdeal S P) (h : IsUnit I) : FG (I : Submodule R P) := fg_unit h.unit #align fractional_ideal.fg_of_is_unit FractionalIdeal.fg_of_isUnit theorem _root_.Ideal.fg_of_isUnit (inj : Function.Injective (algebraMap R P)) (I : Ideal R) (h : IsUnit (I : FractionalIdeal S P)) : I.FG := by rw [← coeIdeal_fg S inj I] exact FractionalIdeal.fg_of_isUnit I h #align ideal.fg_of_is_unit Ideal.fg_of_isUnit variable (S P P') /-- `canonicalEquiv f f'` is the canonical equivalence between the fractional ideals in `P` and in `P'`, which are both localizations of `R` at `S`. -/ noncomputable irreducible_def canonicalEquiv : FractionalIdeal S P ≃+* FractionalIdeal S P' := mapEquiv { ringEquivOfRingEquiv P P' (RingEquiv.refl R) (show S.map _ = S by rw [RingEquiv.toMonoidHom_refl, Submonoid.map_id]) with commutes' := fun r => ringEquivOfRingEquiv_eq _ _ } #align fractional_ideal.canonical_equiv FractionalIdeal.canonicalEquiv @[simp] theorem mem_canonicalEquiv_apply {I : FractionalIdeal S P} {x : P'} : x ∈ canonicalEquiv S P P' I ↔ βˆƒ y ∈ I, IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) (y : P) = x := by rw [canonicalEquiv, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.mem_canonical_equiv_apply FractionalIdeal.mem_canonicalEquiv_apply @[simp] theorem canonicalEquiv_symm : (canonicalEquiv S P P').symm = canonicalEquiv S P' P := RingEquiv.ext fun I => SetLike.ext_iff.mpr fun x => by rw [mem_canonicalEquiv_apply, canonicalEquiv, mapEquiv_symm, mapEquiv_apply, mem_map] exact ⟨fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩, fun ⟨y, mem, Eq⟩ => ⟨y, mem, Eq⟩⟩ #align fractional_ideal.canonical_equiv_symm FractionalIdeal.canonicalEquiv_symm theorem canonicalEquiv_flip (I) : canonicalEquiv S P P' (canonicalEquiv S P' P I) = I := by rw [← canonicalEquiv_symm]; erw [RingEquiv.apply_symm_apply] #align fractional_ideal.canonical_equiv_flip FractionalIdeal.canonicalEquiv_flip @[simp] theorem canonicalEquiv_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] (I : FractionalIdeal S P) : canonicalEquiv S P' P'' (canonicalEquiv S P P' I) = canonicalEquiv S P P'' I := by ext simp only [IsLocalization.map_map, RingHomInvPair.comp_eqβ‚‚, mem_canonicalEquiv_apply, exists_prop, exists_exists_and_eq_and] #align fractional_ideal.canonical_equiv_canonical_equiv FractionalIdeal.canonicalEquiv_canonicalEquiv theorem canonicalEquiv_trans_canonicalEquiv (P'' : Type*) [CommRing P''] [Algebra R P''] [IsLocalization S P''] : (canonicalEquiv S P P').trans (canonicalEquiv S P' P'') = canonicalEquiv S P P'' := RingEquiv.ext (canonicalEquiv_canonicalEquiv S P P' P'') #align fractional_ideal.canonical_equiv_trans_canonical_equiv FractionalIdeal.canonicalEquiv_trans_canonicalEquiv @[simp] theorem canonicalEquiv_coeIdeal (I : Ideal R) : canonicalEquiv S P P' I = I := by ext simp [IsLocalization.map_eq] #align fractional_ideal.canonical_equiv_coe_ideal FractionalIdeal.canonicalEquiv_coeIdeal @[simp] theorem canonicalEquiv_self : canonicalEquiv S P P = RingEquiv.refl _ := by rw [← canonicalEquiv_trans_canonicalEquiv S P P] convert (canonicalEquiv S P P).symm_trans_self exact (canonicalEquiv_symm S P P).symm #align fractional_ideal.canonical_equiv_self FractionalIdeal.canonicalEquiv_self end Semiring section IsFractionRing /-! ### `IsFractionRing` section This section concerns fractional ideals in the field of fractions, i.e. the type `FractionalIdeal R⁰ K` where `IsFractionRing R K`. -/ variable {K K' : Type*} [Field K] [Field K'] variable [Algebra R K] [IsFractionRing R K] [Algebra R K'] [IsFractionRing R K'] variable {I J : FractionalIdeal R⁰ K} (h : K →ₐ[R] K') /-- Nonzero fractional ideals contain a nonzero integer. -/ theorem exists_ne_zero_mem_isInteger [Nontrivial R] (hI : I β‰  0) : βˆƒ x, x β‰  0 ∧ algebraMap R K x ∈ I := by obtain ⟨y : K, y_mem, y_not_mem⟩ := SetLike.exists_of_lt (by simpa only using bot_lt_iff_ne_bot.mpr hI) have y_ne_zero : y β‰  0 := by simpa using y_not_mem obtain ⟨z, ⟨x, hx⟩⟩ := exists_integer_multiple R⁰ y refine' ⟨x, _, _⟩ Β· rw [Ne.def, ← @IsFractionRing.to_map_eq_zero_iff R _ K, hx, Algebra.smul_def] exact mul_ne_zero (IsFractionRing.to_map_ne_zero_of_mem_nonZeroDivisors z.2) y_ne_zero Β· rw [hx] exact smul_mem _ _ y_mem #align fractional_ideal.exists_ne_zero_mem_is_integer FractionalIdeal.exists_ne_zero_mem_isInteger theorem map_ne_zero [Nontrivial R] (hI : I β‰  0) : I.map h β‰  0 := by obtain ⟨x, x_ne_zero, hx⟩ := exists_ne_zero_mem_isInteger hI contrapose! x_ne_zero with map_eq_zero refine' IsFractionRing.to_map_eq_zero_iff.mp (eq_zero_iff.mp map_eq_zero _ (mem_map.mpr _)) exact ⟨algebraMap R K x, hx, h.commutes x⟩ #align fractional_ideal.map_ne_zero FractionalIdeal.map_ne_zero @[simp] theorem map_eq_zero_iff [Nontrivial R] : I.map h = 0 ↔ I = 0 := ⟨not_imp_not.mp (map_ne_zero _), fun hI => hI.symm β–Έ map_zero h⟩ #align fractional_ideal.map_eq_zero_iff FractionalIdeal.map_eq_zero_iff theorem coeIdeal_injective : Function.Injective (fun (I : Ideal R) ↦ (I : FractionalIdeal R⁰ K)) := coeIdeal_injective' le_rfl #align fractional_ideal.coe_ideal_injective FractionalIdeal.coeIdeal_injective theorem coeIdeal_inj {I J : Ideal R} : (I : FractionalIdeal R⁰ K) = (J : FractionalIdeal R⁰ K) ↔ I = J := coeIdeal_inj' le_rfl #align fractional_ideal.coe_ideal_inj FractionalIdeal.coeIdeal_inj @[simp] theorem coeIdeal_eq_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 0 ↔ I = βŠ₯ := coeIdeal_eq_zero' le_rfl #align fractional_ideal.coe_ideal_eq_zero FractionalIdeal.coeIdeal_eq_zero theorem coeIdeal_ne_zero {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  0 ↔ I β‰  βŠ₯ := coeIdeal_ne_zero' le_rfl #align fractional_ideal.coe_ideal_ne_zero FractionalIdeal.coeIdeal_ne_zero @[simp] theorem coeIdeal_eq_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) = 1 ↔ I = 1 := by simpa only [Ideal.one_eq_top] using coeIdeal_inj #align fractional_ideal.coe_ideal_eq_one FractionalIdeal.coeIdeal_eq_one theorem coeIdeal_ne_one {I : Ideal R} : (I : FractionalIdeal R⁰ K) β‰  1 ↔ I β‰  1 := not_iff_not.mpr coeIdeal_eq_one #align fractional_ideal.coe_ideal_ne_one FractionalIdeal.coeIdeal_ne_one end IsFractionRing section Quotient /-! ### `quotient` section This section defines the ideal quotient of fractional ideals. In this section we need that each non-zero `y : R` has an inverse in the localization, i.e. that the localization is a field. We satisfy this assumption by taking `S = nonZeroDivisors R`, `R`'s localization at which is a field because `R` is a domain. -/ open Classical variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [frac : IsFractionRing R₁ K] instance : Nontrivial (FractionalIdeal R₁⁰ K) := ⟨⟨0, 1, fun h => have this : (1 : K) ∈ (0 : FractionalIdeal R₁⁰ K) := by rw [← (algebraMap R₁ K).map_one] simpa only [h] using coe_mem_one R₁⁰ 1 one_ne_zero ((mem_zero_iff _).mp this)⟩⟩ theorem ne_zero_of_mul_eq_one (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : I β‰  0 := fun hI => zero_ne_one' (FractionalIdeal R₁⁰ K) (by convert h simp [hI]) #align fractional_ideal.ne_zero_of_mul_eq_one FractionalIdeal.ne_zero_of_mul_eq_one variable [IsDomain R₁] theorem _root_.IsFractional.div_of_nonzero {I J : Submodule R₁ K} : IsFractional R₁⁰ I β†’ IsFractional R₁⁰ J β†’ J β‰  0 β†’ IsFractional R₁⁰ (I / J) | ⟨aI, haI, hI⟩, ⟨aJ, haJ, hJ⟩, h => by obtain ⟨y, mem_J, not_mem_zero⟩ := SetLike.exists_of_lt (show 0 < J by simpa only using bot_lt_iff_ne_bot.mpr h) obtain ⟨y', hy'⟩ := hJ y mem_J use aI * y' constructor Β· apply (nonZeroDivisors R₁).mul_mem haI (mem_nonZeroDivisors_iff_ne_zero.mpr _) intro y'_eq_zero have : algebraMap R₁ K aJ * y = 0 := by rw [← Algebra.smul_def, ← hy', y'_eq_zero, RingHom.map_zero] have y_zero := (mul_eq_zero.mp this).resolve_left (mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).1 (IsFractionRing.injective _ _) _) (mem_nonZeroDivisors_iff_ne_zero.mp haJ)) apply not_mem_zero simpa intro b hb convert hI _ (hb _ (Submodule.smul_mem _ aJ mem_J)) using 1 rw [← hy', mul_comm b, ← Algebra.smul_def, mul_smul] #align is_fractional.div_of_nonzero IsFractional.div_of_nonzero theorem fractional_div_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : IsFractional R₁⁰ (I / J : Submodule R₁ K) := I.isFractional.div_of_nonzero J.isFractional fun H => h <| coeToSubmodule_injective <| H.trans coe_zero.symm #align fractional_ideal.fractional_div_of_nonzero FractionalIdeal.fractional_div_of_nonzero noncomputable instance : Div (FractionalIdeal R₁⁰ K) := ⟨fun I J => if h : J = 0 then 0 else ⟨I / J, fractional_div_of_nonzero h⟩⟩ variable {I J : FractionalIdeal R₁⁰ K} @[simp] theorem div_zero {I : FractionalIdeal R₁⁰ K} : I / 0 = 0 := dif_pos rfl #align fractional_ideal.div_zero FractionalIdeal.div_zero theorem div_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) : I / J = ⟨I / J, fractional_div_of_nonzero h⟩ := dif_neg h #align fractional_ideal.div_nonzero FractionalIdeal.div_nonzero @[simp] theorem coe_div {I J : FractionalIdeal R₁⁰ K} (hJ : J β‰  0) : (↑(I / J) : Submodule R₁ K) = ↑I / (↑J : Submodule R₁ K) := congr_arg _ (dif_neg hJ) #align fractional_ideal.coe_div FractionalIdeal.coe_div theorem mem_div_iff_of_nonzero {I J : FractionalIdeal R₁⁰ K} (h : J β‰  0) {x} : x ∈ I / J ↔ βˆ€ y ∈ J, x * y ∈ I := by rw [div_nonzero h] exact Submodule.mem_div_iff_forall_mul_mem #align fractional_ideal.mem_div_iff_of_nonzero FractionalIdeal.mem_div_iff_of_nonzero theorem mul_one_div_le_one {I : FractionalIdeal R₁⁰ K} : I * (1 / I) ≀ 1 := by by_cases hI : I = 0 Β· rw [hI, div_zero, mul_zero] exact zero_le 1 Β· rw [← coe_le_coe, coe_mul, coe_div hI, coe_one] apply Submodule.mul_one_div_le_one #align fractional_ideal.mul_one_div_le_one FractionalIdeal.mul_one_div_le_one theorem le_self_mul_one_div {I : FractionalIdeal R₁⁰ K} (hI : I ≀ (1 : FractionalIdeal R₁⁰ K)) : I ≀ I * (1 / I) := by by_cases hI_nz : I = 0 Β· rw [hI_nz, div_zero, mul_zero] Β· rw [← coe_le_coe, coe_mul, coe_div hI_nz, coe_one] rw [← coe_le_coe, coe_one] at hI exact Submodule.le_self_mul_one_div hI #align fractional_ideal.le_self_mul_one_div FractionalIdeal.le_self_mul_one_div theorem le_div_iff_of_nonzero {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ βˆ€ x ∈ I, βˆ€ y ∈ J', x * y ∈ J := ⟨fun h _ hx => (mem_div_iff_of_nonzero hJ').mp (h hx), fun h x hx => (mem_div_iff_of_nonzero hJ').mpr (h x hx)⟩ #align fractional_ideal.le_div_iff_of_nonzero FractionalIdeal.le_div_iff_of_nonzero theorem le_div_iff_mul_le {I J J' : FractionalIdeal R₁⁰ K} (hJ' : J' β‰  0) : I ≀ J / J' ↔ I * J' ≀ J := by rw [div_nonzero hJ'] -- Porting note: this used to be { convert; rw }, flipped the order. rw [← coe_le_coe (I := I * J') (J := J), coe_mul] exact Submodule.le_div_iff_mul_le #align fractional_ideal.le_div_iff_mul_le FractionalIdeal.le_div_iff_mul_le @[simp] theorem div_one {I : FractionalIdeal R₁⁰ K} : I / 1 = I := by rw [div_nonzero (one_ne_zero' (FractionalIdeal R₁⁰ K))] ext constructor <;> intro h Β· simpa using mem_div_iff_forall_mul_mem.mp h 1 ((algebraMap R₁ K).map_one β–Έ coe_mem_one R₁⁰ 1) Β· apply mem_div_iff_forall_mul_mem.mpr rintro y ⟨y', _, rfl⟩ -- Porting note: this used to be { convert; rw }, flipped the order. rw [mul_comm, Algebra.linearMap_apply, ← Algebra.smul_def] exact Submodule.smul_mem _ y' h #align fractional_ideal.div_one FractionalIdeal.div_one theorem eq_one_div_of_mul_eq_one_right (I J : FractionalIdeal R₁⁰ K) (h : I * J = 1) : J = 1 / I := by have hI : I β‰  0 := ne_zero_of_mul_eq_one I J h suffices h' : I * (1 / I) = 1 Β· exact congr_arg Units.inv <| @Units.ext _ _ (Units.mkOfMulEqOne _ _ h) (Units.mkOfMulEqOne _ _ h') rfl apply le_antisymm Β· apply mul_le.mpr _ intro x hx y hy rw [mul_comm] exact (mem_div_iff_of_nonzero hI).mp hy x hx rw [← h] apply mul_left_mono I apply (le_div_iff_of_nonzero hI).mpr _ intro y hy x hx rw [mul_comm] exact mul_mem_mul hx hy #align fractional_ideal.eq_one_div_of_mul_eq_one_right FractionalIdeal.eq_one_div_of_mul_eq_one_right theorem mul_div_self_cancel_iff {I : FractionalIdeal R₁⁰ K} : I * (1 / I) = 1 ↔ βˆƒ J, I * J = 1 := ⟨fun h => ⟨1 / I, h⟩, fun ⟨J, hJ⟩ => by rwa [← eq_one_div_of_mul_eq_one_right I J hJ]⟩ #align fractional_ideal.mul_div_self_cancel_iff FractionalIdeal.mul_div_self_cancel_iff variable {K' : Type*} [Field K'] [Algebra R₁ K'] [IsFractionRing R₁ K'] @[simp] theorem map_div (I J : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (I / J).map (h : K →ₐ[R₁] K') = I.map h / J.map h := by by_cases H : J = 0 Β· rw [H, div_zero, map_zero, div_zero] Β· -- Porting note: `simp` wouldn't apply these lemmas so do them manually using `rw` rw [← coeToSubmodule_inj, div_nonzero H, div_nonzero (map_ne_zero _ H)] simp [Submodule.map_div] #align fractional_ideal.map_div FractionalIdeal.map_div -- Porting note: doesn't need to be @[simp] because this follows from `map_one` and `map_div` theorem map_one_div (I : FractionalIdeal R₁⁰ K) (h : K ≃ₐ[R₁] K') : (1 / I).map (h : K →ₐ[R₁] K') = 1 / I.map h := by rw [map_div, map_one] #align fractional_ideal.map_one_div FractionalIdeal.map_one_div end Quotient section Field variable {R₁ K L : Type*} [CommRing R₁] [Field K] [Field L] variable [Algebra R₁ K] [IsFractionRing R₁ K] [Algebra K L] [IsFractionRing K L] theorem eq_zero_or_one (I : FractionalIdeal K⁰ L) : I = 0 ∨ I = 1 := by rw [or_iff_not_imp_left] intro hI simp_rw [@SetLike.ext_iff _ _ _ I 1, mem_one_iff] intro x constructor Β· intro x_mem obtain ⟨n, d, rfl⟩ := IsLocalization.mk'_surjective K⁰ x refine' ⟨n / d, _⟩ rw [map_divβ‚€, IsFractionRing.mk'_eq_div] Β· rintro ⟨x, rfl⟩ obtain ⟨y, y_ne, y_mem⟩ := exists_ne_zero_mem_isInteger hI rw [← div_mul_cancel x y_ne, RingHom.map_mul, ← Algebra.smul_def] exact smul_mem (M := L) I (x / y) y_mem #align fractional_ideal.eq_zero_or_one FractionalIdeal.eq_zero_or_one theorem eq_zero_or_one_of_isField (hF : IsField R₁) (I : FractionalIdeal R₁⁰ K) : I = 0 ∨ I = 1 := letI : Field R₁ := hF.toField eq_zero_or_one I #align fractional_ideal.eq_zero_or_one_of_is_field FractionalIdeal.eq_zero_or_one_of_isField end Field section PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] {K : Type*} [Field K] variable [Algebra R₁ K] [IsFractionRing R₁ K] open Classical variable (R₁) /-- `FractionalIdeal.span_finset R₁ s f` is the fractional ideal of `R₁` generated by `f '' s`. -/ -- Porting note: `@[simps]` generated a `Subtype.val` coercion instead of a -- `FractionalIdeal.coeToSubmodule` coercion def spanFinset {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : FractionalIdeal R₁⁰ K := ⟨Submodule.span R₁ (f '' s), by obtain ⟨a', ha'⟩ := IsLocalization.exist_integer_multiples R₁⁰ s f refine' ⟨a', a'.2, fun x hx => Submodule.span_induction hx _ _ _ _⟩ Β· rintro _ ⟨i, hi, rfl⟩ exact ha' i hi Β· rw [smul_zero] exact IsLocalization.isInteger_zero Β· intro x y hx hy rw [smul_add] exact IsLocalization.isInteger_add hx hy Β· intro c x hx rw [smul_comm] exact IsLocalization.isInteger_smul hx⟩ #align fractional_ideal.span_finset FractionalIdeal.spanFinset @[simp] lemma spanFinset_coe {ΞΉ : Type*} (s : Finset ΞΉ) (f : ΞΉ β†’ K) : (spanFinset R₁ s f : Submodule R₁ K) = Submodule.span R₁ (f '' s) := rfl variable {R₁} @[simp] theorem spanFinset_eq_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f = 0 ↔ βˆ€ j ∈ s, f j = 0 := by simp only [← coeToSubmodule_inj, spanFinset_coe, coe_zero, Submodule.span_eq_bot, Set.mem_image, Finset.mem_coe, forall_exists_index, and_imp, forall_apply_eq_imp_iffβ‚‚] #align fractional_ideal.span_finset_eq_zero FractionalIdeal.spanFinset_eq_zero theorem spanFinset_ne_zero {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β†’ K} : spanFinset R₁ s f β‰  0 ↔ βˆƒ j ∈ s, f j β‰  0 := by simp #align fractional_ideal.span_finset_ne_zero FractionalIdeal.spanFinset_ne_zero open Submodule.IsPrincipal theorem isFractional_span_singleton (x : P) : IsFractional S (span R {x} : Submodule R P) := let ⟨a, ha⟩ := exists_integer_multiple S x isFractional_span_iff.mpr ⟨a, a.2, fun _ hx' => (Set.mem_singleton_iff.mp hx').symm β–Έ ha⟩ #align fractional_ideal.is_fractional_span_singleton FractionalIdeal.isFractional_span_singleton variable (S) /-- `spanSingleton x` is the fractional ideal generated by `x` if `0 βˆ‰ S` -/ irreducible_def spanSingleton (x : P) : FractionalIdeal S P := ⟨span R {x}, isFractional_span_singleton x⟩ #align fractional_ideal.span_singleton FractionalIdeal.spanSingleton -- local attribute [semireducible] span_singleton @[simp] theorem coe_spanSingleton (x : P) : (spanSingleton S x : Submodule R P) = span R {x} := by rw [spanSingleton] rfl #align fractional_ideal.coe_span_singleton FractionalIdeal.coe_spanSingleton @[simp] theorem mem_spanSingleton {x y : P} : x ∈ spanSingleton S y ↔ βˆƒ z : R, z β€’ y = x := by rw [spanSingleton] exact Submodule.mem_span_singleton #align fractional_ideal.mem_span_singleton FractionalIdeal.mem_spanSingleton theorem mem_spanSingleton_self (x : P) : x ∈ spanSingleton S x := (mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩ #align fractional_ideal.mem_span_singleton_self FractionalIdeal.mem_spanSingleton_self variable {S} @[simp] theorem spanSingleton_le_iff_mem {x : P} {I : FractionalIdeal S P} : spanSingleton S x ≀ I ↔ x ∈ I := by rw [← coe_le_coe, coe_spanSingleton, Submodule.span_singleton_le_iff_mem, mem_coe] #align fractional_ideal.span_singleton_le_iff_mem FractionalIdeal.spanSingleton_le_iff_mem theorem spanSingleton_eq_spanSingleton [NoZeroSMulDivisors R P] {x y : P} : spanSingleton S x = spanSingleton S y ↔ βˆƒ z : RΛ£, z β€’ x = y := by rw [← Submodule.span_singleton_eq_span_singleton, spanSingleton, spanSingleton] exact Subtype.mk_eq_mk #align fractional_ideal.span_singleton_eq_span_singleton FractionalIdeal.spanSingleton_eq_spanSingleton theorem eq_spanSingleton_of_principal (I : FractionalIdeal S P) [IsPrincipal (I : Submodule R P)] : I = spanSingleton S (generator (I : Submodule R P)) := by -- Porting note: this used to be `coeToSubmodule_injective (span_singleton_generator ↑I).symm` -- but Lean 4 struggled to unify everything. Turned it into an explicit `rw`. rw [spanSingleton, ← coeToSubmodule_inj, coe_mk, span_singleton_generator] #align fractional_ideal.eq_span_singleton_of_principal FractionalIdeal.eq_spanSingleton_of_principal theorem isPrincipal_iff (I : FractionalIdeal S P) : IsPrincipal (I : Submodule R P) ↔ βˆƒ x, I = spanSingleton S x := ⟨fun h => ⟨@generator _ _ _ _ _ (↑I) h, @eq_spanSingleton_of_principal _ _ _ _ _ _ _ I h⟩, fun ⟨x, hx⟩ => { principal' := ⟨x, Eq.trans (congr_arg _ hx) (coe_spanSingleton _ x)⟩ }⟩ #align fractional_ideal.is_principal_iff FractionalIdeal.isPrincipal_iff @[simp] theorem spanSingleton_zero : spanSingleton S (0 : P) = 0 := by ext simp [Submodule.mem_span_singleton, eq_comm] #align fractional_ideal.span_singleton_zero FractionalIdeal.spanSingleton_zero theorem spanSingleton_eq_zero_iff {y : P} : spanSingleton S y = 0 ↔ y = 0 := ⟨fun h => span_eq_bot.mp (by simpa using congr_arg Subtype.val h : span R {y} = βŠ₯) y (mem_singleton y), fun h => by simp [h]⟩ #align fractional_ideal.span_singleton_eq_zero_iff FractionalIdeal.spanSingleton_eq_zero_iff theorem spanSingleton_ne_zero_iff {y : P} : spanSingleton S y β‰  0 ↔ y β‰  0 := not_congr spanSingleton_eq_zero_iff #align fractional_ideal.span_singleton_ne_zero_iff FractionalIdeal.spanSingleton_ne_zero_iff @[simp] theorem spanSingleton_one : spanSingleton S (1 : P) = 1 := by ext refine' (mem_spanSingleton S).trans ((exists_congr _).trans (mem_one_iff S).symm) intro x' rw [Algebra.smul_def, mul_one] #align fractional_ideal.span_singleton_one FractionalIdeal.spanSingleton_one @[simp] theorem spanSingleton_mul_spanSingleton (x y : P) : spanSingleton S x * spanSingleton S y = spanSingleton S (x * y) := by apply coeToSubmodule_injective simp only [coe_mul, coe_spanSingleton, span_mul_span, singleton_mul_singleton] #align fractional_ideal.span_singleton_mul_span_singleton FractionalIdeal.spanSingleton_mul_spanSingleton @[simp] theorem spanSingleton_pow (x : P) (n : β„•) : spanSingleton S x ^ n = spanSingleton S (x ^ n) := by induction' n with n hn Β· rw [pow_zero, pow_zero, spanSingleton_one] Β· rw [pow_succ, hn, spanSingleton_mul_spanSingleton, pow_succ] #align fractional_ideal.span_singleton_pow FractionalIdeal.spanSingleton_pow @[simp] theorem coeIdeal_span_singleton (x : R) : (↑(Ideal.span {x} : Ideal R) : FractionalIdeal S P) = spanSingleton S (algebraMap R P x) := by ext y refine' (mem_coeIdeal S).trans (Iff.trans _ (mem_spanSingleton S).symm) constructor Β· rintro ⟨y', hy', rfl⟩ obtain ⟨x', rfl⟩ := Submodule.mem_span_singleton.mp hy' use x' rw [smul_eq_mul, RingHom.map_mul, Algebra.smul_def] Β· rintro ⟨y', rfl⟩ refine' ⟨y' * x, Submodule.mem_span_singleton.mpr ⟨y', rfl⟩, _⟩ rw [RingHom.map_mul, Algebra.smul_def] #align fractional_ideal.coe_ideal_span_singleton FractionalIdeal.coeIdeal_span_singleton @[simp] theorem canonicalEquiv_spanSingleton {P'} [CommRing P'] [Algebra R P'] [IsLocalization S P'] (x : P) : canonicalEquiv S P P' (spanSingleton S x) = spanSingleton S (IsLocalization.map P' (RingHom.id R) (fun y (hy : y ∈ S) => show RingHom.id R y ∈ S from hy) x) := by apply SetLike.ext_iff.mpr intro y constructor <;> intro h Β· rw [mem_spanSingleton] obtain ⟨x', hx', rfl⟩ := (mem_canonicalEquiv_apply _ _ _).mp h obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp hx' use z rw [IsLocalization.map_smul, RingHom.id_apply] Β· rw [mem_canonicalEquiv_apply] obtain ⟨z, rfl⟩ := (mem_spanSingleton _).mp h use z β€’ x use (mem_spanSingleton _).mpr ⟨z, rfl⟩ simp [IsLocalization.map_smul] #align fractional_ideal.canonical_equiv_span_singleton FractionalIdeal.canonicalEquiv_spanSingleton theorem mem_singleton_mul {x y : P} {I : FractionalIdeal S P} : y ∈ spanSingleton S x * I ↔ βˆƒ y' ∈ I, y = x * y' := by constructor Β· intro h refine FractionalIdeal.mul_induction_on h ?_ ?_ Β· intro x' hx' y' hy' obtain ⟨a, ha⟩ := (mem_spanSingleton S).mp hx' use a β€’ y', Submodule.smul_mem (I : Submodule R P) a hy' rw [← ha, Algebra.mul_smul_comm, Algebra.smul_mul_assoc] Β· rintro _ _ ⟨y, hy, rfl⟩ ⟨y', hy', rfl⟩ exact ⟨y + y', Submodule.add_mem (I : Submodule R P) hy hy', (mul_add _ _ _).symm⟩ Β· rintro ⟨y', hy', rfl⟩ exact mul_mem_mul ((mem_spanSingleton S).mpr ⟨1, one_smul _ _⟩) hy' #align fractional_ideal.mem_singleton_mul FractionalIdeal.mem_singleton_mul variable (K) theorem mk'_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {x y : R₁} (hy : y ∈ R₁⁰) : spanSingleton R₁⁰ (IsLocalization.mk' K x ⟨y, hy⟩) * I = (J : FractionalIdeal R₁⁰ K) ↔ Ideal.span {x} * I = Ideal.span {y} * J := by have : spanSingleton R₁⁰ (IsLocalization.mk' _ (1 : R₁) ⟨y, hy⟩) * spanSingleton R₁⁰ (algebraMap R₁ K y) = 1 := by rw [spanSingleton_mul_spanSingleton, mul_comm, ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one] let y' : (FractionalIdeal R₁⁰ K)Λ£ := Units.mkOfMulEqOne _ _ this have coe_y' : ↑y' = spanSingleton R₁⁰ (IsLocalization.mk' K (1 : R₁) ⟨y, hy⟩) := rfl refine' Iff.trans _ (y'.mul_right_inj.trans coeIdeal_inj) rw [coe_y', coeIdeal_mul, coeIdeal_span_singleton, coeIdeal_mul, coeIdeal_span_singleton, ← mul_assoc, spanSingleton_mul_spanSingleton, ← mul_assoc, spanSingleton_mul_spanSingleton, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, mul_comm (mk' _ _ _), ← IsLocalization.mk'_eq_mul_mk'_one, IsLocalization.mk'_self, spanSingleton_one, one_mul] #align fractional_ideal.mk'_mul_coe_ideal_eq_coe_ideal FractionalIdeal.mk'_mul_coeIdeal_eq_coeIdeal variable {K} theorem spanSingleton_mul_coeIdeal_eq_coeIdeal {I J : Ideal R₁} {z : K} : spanSingleton R₁⁰ z * (I : FractionalIdeal R₁⁰ K) = J ↔ Ideal.span {((IsLocalization.sec R₁⁰ z).1 : R₁)} * I = Ideal.span {((IsLocalization.sec R₁⁰ z).2 : R₁)} * J := by rw [← mk'_mul_coeIdeal_eq_coeIdeal K (IsLocalization.sec R₁⁰ z).2.prop, IsLocalization.mk'_sec K z] #align fractional_ideal.span_singleton_mul_coe_ideal_eq_coe_ideal FractionalIdeal.spanSingleton_mul_coeIdeal_eq_coeIdeal variable [IsDomain R₁] theorem one_div_spanSingleton (x : K) : 1 / spanSingleton R₁⁰ x = spanSingleton R₁⁰ x⁻¹ := if h : x = 0 then by simp [h] else (eq_one_div_of_mul_eq_one_right _ _ (by simp [h])).symm #align fractional_ideal.one_div_span_singleton FractionalIdeal.one_div_spanSingleton @[simp] theorem div_spanSingleton (J : FractionalIdeal R₁⁰ K) (d : K) : J / spanSingleton R₁⁰ d = spanSingleton R₁⁰ d⁻¹ * J := by rw [← one_div_spanSingleton] by_cases hd : d = 0 Β· simp only [hd, spanSingleton_zero, div_zero, zero_mul] have h_spand : spanSingleton R₁⁰ d β‰  0 := mt spanSingleton_eq_zero_iff.mp hd apply le_antisymm Β· intro x hx dsimp only [val_eq_coe] at hx ⊒ -- Porting note: get rid of the partially applied `coe`s rw [coe_div h_spand, Submodule.mem_div_iff_forall_mul_mem] at hx specialize hx d (mem_spanSingleton_self R₁⁰ d) have h_xd : x = d⁻¹ * (x * d) := by field_simp rw [coe_mul, one_div_spanSingleton, h_xd] exact Submodule.mul_mem_mul (mem_spanSingleton_self R₁⁰ _) hx Β· rw [le_div_iff_mul_le h_spand, mul_assoc, mul_left_comm, one_div_spanSingleton, spanSingleton_mul_spanSingleton, inv_mul_cancel hd, spanSingleton_one, mul_one] #align fractional_ideal.div_span_singleton FractionalIdeal.div_spanSingleton theorem exists_eq_spanSingleton_mul (I : FractionalIdeal R₁⁰ K) : βˆƒ (a : R₁) (aI : Ideal R₁), a β‰  0 ∧ I = spanSingleton R₁⁰ (algebraMap R₁ K a)⁻¹ * aI := by obtain ⟨a_inv, nonzero, ha⟩ := I.isFractional have nonzero := mem_nonZeroDivisors_iff_ne_zero.mp nonzero have map_a_nonzero : algebraMap R₁ K a_inv β‰  0 := mt IsFractionRing.to_map_eq_zero_iff.mp nonzero refine' ⟨a_inv, Submodule.comap (Algebra.linearMap R₁ K) ↑(spanSingleton R₁⁰ (algebraMap R₁ K a_inv) * I), nonzero, ext fun x => Iff.trans ⟨_, _⟩ mem_singleton_mul.symm⟩ Β· intro hx obtain ⟨x', hx'⟩ := ha x hx rw [Algebra.smul_def] at hx' refine' ⟨algebraMap R₁ K x', (mem_coeIdeal _).mpr ⟨x', mem_singleton_mul.mpr _, rfl⟩, _⟩ Β· exact ⟨x, hx, hx'⟩ Β· rw [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] Β· rintro ⟨y, hy, rfl⟩ obtain ⟨x', hx', rfl⟩ := (mem_coeIdeal _).mp hy obtain ⟨y', hy', hx'⟩ := mem_singleton_mul.mp hx' rw [Algebra.linearMap_apply] at hx' rwa [hx', ← mul_assoc, inv_mul_cancel map_a_nonzero, one_mul] #align fractional_ideal.exists_eq_span_singleton_mul FractionalIdeal.exists_eq_spanSingleton_mul instance isPrincipal {R} [CommRing R] [IsDomain R] [IsPrincipalIdealRing R] [Algebra R K] [IsFractionRing R K] (I : FractionalIdeal R⁰ K) : (I : Submodule R K).IsPrincipal := by obtain ⟨a, aI, -, ha⟩ := exists_eq_spanSingleton_mul I use (algebraMap R K a)⁻¹ * algebraMap R K (generator aI) suffices I = spanSingleton R⁰ ((algebraMap R K a)⁻¹ * algebraMap R K (generator aI)) by rw [spanSingleton] at this exact congr_arg Subtype.val this conv_lhs => rw [ha, ← span_singleton_generator aI] rw [Ideal.submodule_span_eq, coeIdeal_span_singleton (generator aI), spanSingleton_mul_spanSingleton] #align fractional_ideal.is_principal FractionalIdeal.isPrincipal theorem le_spanSingleton_mul_iff {x : P} {I J : FractionalIdeal S P} : I ≀ spanSingleton S x * J ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI := show (βˆ€ {zI} (hzI : zI ∈ I), zI ∈ spanSingleton _ x * J) ↔ βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI by simp only [mem_singleton_mul, eq_comm] #align fractional_ideal.le_span_singleton_mul_iff FractionalIdeal.le_spanSingleton_mul_iff theorem spanSingleton_mul_le_iff {x : P} {I J : FractionalIdeal S P} : spanSingleton _ x * I ≀ J ↔ βˆ€ z ∈ I, x * z ∈ J := by simp only [mul_le, mem_singleton_mul, mem_spanSingleton] constructor Β· intro h zI hzI exact h x ⟨1, one_smul _ _⟩ zI hzI Β· rintro h _ ⟨z, rfl⟩ zI hzI rw [Algebra.smul_mul_assoc] exact Submodule.smul_mem J.1 _ (h zI hzI) #align fractional_ideal.span_singleton_mul_le_iff FractionalIdeal.spanSingleton_mul_le_iff theorem eq_spanSingleton_mul {x : P} {I J : FractionalIdeal S P} : I = spanSingleton _ x * J ↔ (βˆ€ zI ∈ I, βˆƒ zJ ∈ J, x * zJ = zI) ∧ βˆ€ z ∈ J, x * z ∈ I := by simp only [le_antisymm_iff, le_spanSingleton_mul_iff, spanSingleton_mul_le_iff] #align fractional_ideal.eq_span_singleton_mul FractionalIdeal.eq_spanSingleton_mul end PrincipalIdealRing variable {R₁ : Type*} [CommRing R₁] variable {K : Type*} [Field K] [Algebra R₁ K] [frac : IsFractionRing R₁ K] attribute [local instance] Classical.propDecidable theorem isNoetherian_zero : IsNoetherian R₁ (0 : FractionalIdeal R₁⁰ K) := isNoetherian_submodule.mpr fun I (hI : I ≀ (0 : FractionalIdeal R₁⁰ K)) => by rw [coe_zero, le_bot_iff] at hI rw [hI] exact fg_bot #align fractional_ideal.is_noetherian_zero FractionalIdeal.isNoetherian_zero theorem isNoetherian_iff {I : FractionalIdeal R₁⁰ K} : IsNoetherian R₁ I ↔ βˆ€ J ≀ I, (J : Submodule R₁ K).FG := isNoetherian_submodule.trans ⟨fun h _ hJ => h _ hJ, fun h J hJ => h ⟨J, isFractional_of_le hJ⟩ hJ⟩ #align fractional_ideal.is_noetherian_iff FractionalIdeal.isNoetherian_iff theorem isNoetherian_coeIdeal [IsNoetherianRing R₁] (I : Ideal R₁) : IsNoetherian R₁ (I : FractionalIdeal R₁⁰ K) := by rw [isNoetherian_iff] intro J hJ obtain ⟨J, rfl⟩ := le_one_iff_exists_coeIdeal.mp (le_trans hJ coeIdeal_le_one) exact (IsNoetherian.noetherian J).map _ #align fractional_ideal.is_noetherian_coe_ideal FractionalIdeal.isNoetherian_coeIdeal variable [IsDomain R₁] theorem isNoetherian_spanSingleton_inv_to_map_mul (x : R₁) {I : FractionalIdeal R₁⁰ K} (hI : IsNoetherian R₁ I) : IsNoetherian R₁ (spanSingleton R₁⁰ (algebraMap R₁ K x)⁻¹ * I : FractionalIdeal R₁⁰ K) := by by_cases hx : x = 0 Β· rw [hx, RingHom.map_zero, inv_zero, spanSingleton_zero, zero_mul] exact isNoetherian_zero have h_gx : algebraMap R₁ K x β‰  0 := mt ((injective_iff_map_eq_zero (algebraMap R₁ K)).mp (IsFractionRing.injective _ _) x) hx have h_spanx : spanSingleton R₁⁰ (algebraMap R₁ K x) β‰  0 := spanSingleton_ne_zero_iff.mpr h_gx rw [isNoetherian_iff] at hI ⊒ intro J hJ rw [← div_spanSingleton, le_div_iff_mul_le h_spanx] at hJ obtain ⟨s, hs⟩ := hI _ hJ use s * {(algebraMap R₁ K x)⁻¹} rw [Finset.coe_mul, Finset.coe_singleton, ← span_mul_span, hs, ← coe_spanSingleton R₁⁰, ← coe_mul, mul_assoc, spanSingleton_mul_spanSingleton, mul_inv_cancel h_gx, spanSingleton_one, mul_one] #align fractional_ideal.is_noetherian_span_singleton_inv_to_map_mul FractionalIdeal.isNoetherian_spanSingleton_inv_to_map_mul /-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by obtain ⟨d, J, _, rfl⟩ := exists_eq_spanSingleton_mul I apply isNoetherian_spanSingleton_inv_to_map_mul
apply isNoetherian_coeIdeal
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I := by obtain ⟨d, J, _, rfl⟩ := exists_eq_spanSingleton_mul I apply isNoetherian_spanSingleton_inv_to_map_mul
Mathlib.RingTheory.FractionalIdeal.1586_0.90B1BH8AtSmfl9S
/-- Every fractional ideal of a noetherian integral domain is noetherian. -/ theorem isNoetherian [IsNoetherianRing R₁] (I : FractionalIdeal R₁⁰ K) : IsNoetherian R₁ I
Mathlib_RingTheory_FractionalIdeal
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊒ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by
have hxz := hxy.trans hyz
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z ⊒ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz
rw [← sub_pos] at hxy hxz hyz
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x ⊒ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz
suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x this : f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) ⊒ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by
ring_nf at this ⊒
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ ≀ (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z ⊒ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x ≀ -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
set a := (z - y) / (z - x)
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x)
set b := (y - x) / (z - x)
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x)
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x)
have hy : a β€’ x + b β€’ z = y := by field_simp; ring
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x)
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) ⊒ a β€’ x + b β€’ z = y
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by
field_simp
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) ⊒ (z - y) * x + (y - x) * z = y * (z - x)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp;
ring
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp;
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring
have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp)
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ a
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by
apply div_nonneg
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
case ha π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ z - y
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;>
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;>
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
case hb π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ z - x
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;>
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;>
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ b
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by
apply div_nonneg
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
case ha π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ y - x
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;>
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;>
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
case hb π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ 0 ≀ z - x
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;>
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;>
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y ⊒ a + b = 1
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by
field_simp
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : f (a β€’ x + b β€’ z) ≀ a β€’ f x + b β€’ f z ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp)
rw [hy] at key
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp)
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : f y ≀ a β€’ f x + b β€’ f z ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key
replace key := mul_le_mul_of_nonneg_left key hxz.le
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : (z - x) * f y ≀ (z - x) * (a β€’ f x + b β€’ f z) ⊒ f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le
field_simp [mul_comm (z - x) _] at key ⊒
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : f y * (z - x) ≀ (z - y) * f x + (y - x) * f z ⊒ (f y * (z - y) + f y * (y - x)) / ((y - x) * (z - y)) ≀ (f x * (z - y) + f z * (y - x)) / ((y - x) * (z - y))
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒
rw [div_le_div_right]
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : f y * (z - x) ≀ (z - y) * f x + (y - x) * f z ⊒ f y * (z - y) + f y * (y - x) ≀ f x * (z - y) + f z * (y - x)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β·
linarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β·
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) hy : a β€’ x + b β€’ z = y key : f y * (z - x) ≀ (z - y) * f x + (y - x) * f z ⊒ 0 < (y - x) * (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β·
nlinarith
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β·
Mathlib.Analysis.Convex.Slope.24_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConcaveOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊒ (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by
have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz)
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by
Mathlib.Analysis.Convex.Slope.48_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConcaveOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : -(((-f) z - (-f) y) / (z - y)) ≀ -(((-f) y - (-f) x) / (y - x)) ⊒ (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz)
simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz)
Mathlib.Analysis.Convex.Slope.48_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : ConcaveOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z this : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) ⊒ (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this
exact this
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this
Mathlib.Analysis.Convex.Slope.48_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z ⊒ (f y - f x) / (y - x) < (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by
have hxz := hxy.trans hyz
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z ⊒ (f y - f x) / (y - x) < (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz
have hxz' := hxz.ne
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : x < y hyz : y < z hxz : x < z hxz' : x β‰  z ⊒ (f y - f x) / (y - x) < (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne
rw [← sub_pos] at hxy hxz hyz
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z ⊒ (f y - f x) / (y - x) < (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz
suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z this : f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) ⊒ (f y - f x) / (y - x) < (f z - f y) / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by
ring_nf at this ⊒
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z this : f y * (y - x)⁻¹ + f y * (-y + z)⁻¹ < (y - x)⁻¹ * f x + (-y + z)⁻¹ * f z ⊒ f y * (y - x)⁻¹ - (y - x)⁻¹ * f x < -(f y * (-y + z)⁻¹) + (-y + z)⁻¹ * f z
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒
linarith
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z ⊒ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
set a := (z - y) / (z - x)
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z a : π•œ := (z - y) / (z - x) ⊒ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x)
set b := (y - x) / (z - x)
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x)
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope
π•œ : Type u_1 inst✝ : LinearOrderedField π•œ s : Set π•œ f : π•œ β†’ π•œ hf : StrictConvexOn π•œ s f x y z : π•œ hx : x ∈ s hz : z ∈ s hxy : 0 < y - x hyz : 0 < z - y hxz : 0 < z - x hxz' : x β‰  z a : π•œ := (z - y) / (z - x) b : π•œ := (y - x) / (z - x) ⊒ f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y)
/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import Mathlib.Analysis.Convex.Function import Mathlib.Tactic.FieldSimp import Mathlib.Tactic.Linarith #align_import analysis.convex.slope from "leanprover-community/mathlib"@"a8b2226cfb0a79f5986492053fc49b1a0c6aeffb" /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variable {π•œ : Type*} [LinearOrderedField π•œ] {s : Set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConvexOn.slope_mono_adjacent (hf : ConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := by have hxz := hxy.trans hyz rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x) have hy : a β€’ x + b β€’ z = y := by field_simp; ring have key := hf.2 hx hz (show 0 ≀ a by apply div_nonneg <;> linarith) (show 0 ≀ b by apply div_nonneg <;> linarith) (show a + b = 1 by field_simp) rw [hy] at key replace key := mul_le_mul_of_nonneg_left key hxz.le field_simp [mul_comm (z - x) _] at key ⊒ rw [div_le_div_right] Β· linarith Β· nlinarith #align convex_on.slope_mono_adjacent ConvexOn.slope_mono_adjacent /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ theorem ConcaveOn.slope_anti_adjacent (hf : ConcaveOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := by have := neg_le_neg (ConvexOn.slope_mono_adjacent hf.neg hx hz hxy hyz) simp only [Pi.neg_apply, ← neg_div, neg_sub', neg_neg] at this exact this #align concave_on.slope_anti_adjacent ConcaveOn.slope_anti_adjacent /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x)
have hy : a β€’ x + b β€’ z = y := by field_simp; ring
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := by have hxz := hxy.trans hyz have hxz' := hxz.ne rw [← sub_pos] at hxy hxz hyz suffices f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y) by ring_nf at this ⊒ linarith set a := (z - y) / (z - x) set b := (y - x) / (z - x)
Mathlib.Analysis.Convex.Slope.57_0.2UqTeSfXEWgn9kZ
/-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ theorem StrictConvexOn.slope_strict_mono_adjacent (hf : StrictConvexOn π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y)
Mathlib_Analysis_Convex_Slope