state
stringlengths 0
159k
| srcUpToTactic
stringlengths 387
167k
| nextTactic
stringlengths 3
9k
| declUpToTactic
stringlengths 22
11.5k
| declId
stringlengths 38
95
| decl
stringlengths 16
1.89k
| file_tag
stringlengths 17
73
|
---|---|---|---|---|---|---|
case inr
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ arg z ↔ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
| calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.166_0.CflASCTDE9UCom5 | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ Real.sin (arg z) → 0 ≤ arg z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
| contrapose! | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.166_0.CflASCTDE9UCom5 | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h₀ : z ≠ 0
⊢ arg z < 0 → Real.sin (arg z) < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
| intro h | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.166_0.CflASCTDE9UCom5 | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h₀ : z ≠ 0
h : arg z < 0
⊢ Real.sin (arg z) < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
| exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _) | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.166_0.CflASCTDE9UCom5 | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h₀ : z ≠ 0
⊢ 0 ≤ Real.sin (arg z) ↔ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by | rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul] | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.166_0.CflASCTDE9UCom5 | @[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
r : ℝ
hr : 0 < r
⊢ arg (↑r * x) = arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
| rcases eq_or_ne x 0 with (rfl | hx) | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
r : ℝ
hr : 0 < r
⊢ arg (↑r * 0) = arg 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · | rw [mul_zero] | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · | Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
⊢ arg (↑r * x) = arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
| conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
r : ℝ
hr : 0 < r
hx : x ≠ 0
| arg (↑r * x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc] | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.184_0.CflASCTDE9UCom5 | theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ arg x = arg y ↔ ↑(abs y) / ↑(abs x) * x = y | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
| simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff] | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.194_0.CflASCTDE9UCom5 | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ arg x = arg y ↔ arg (↑(abs y) / ↑(abs x) * x) = arg y | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
| rw [← ofReal_div, arg_real_mul] | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.194_0.CflASCTDE9UCom5 | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case hr
x y : ℂ
hx : x ≠ 0
hy : y ≠ 0
⊢ 0 < abs y / abs x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
| exact div_pos (abs.pos hy) (abs.pos hx) | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.194_0.CflASCTDE9UCom5 | theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
⊢ arg 1 = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by | simp [arg, zero_le_one] | @[simp]
theorem arg_one : arg 1 = 0 := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.202_0.CflASCTDE9UCom5 | @[simp]
theorem arg_one : arg 1 = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
⊢ arg (-1) = π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by | simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)] | @[simp]
theorem arg_neg_one : arg (-1) = π := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.206_0.CflASCTDE9UCom5 | @[simp]
theorem arg_neg_one : arg (-1) = π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
⊢ arg I = π / 2 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by | simp [arg, le_refl] | @[simp]
theorem arg_I : arg I = π / 2 := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.210_0.CflASCTDE9UCom5 | @[simp]
theorem arg_I : arg I = π / 2 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
⊢ arg (-I) = -(π / 2) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by | simp [arg, le_refl] | @[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.215_0.CflASCTDE9UCom5 | @[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ Real.tan (arg x) = x.im / x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
| by_cases h : x = 0 | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.220_0.CflASCTDE9UCom5 | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
x : ℂ
h : x = 0
⊢ Real.tan (arg x) = x.im / x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· | simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re] | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.220_0.CflASCTDE9UCom5 | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
x : ℂ
h : ¬x = 0
⊢ Real.tan (arg x) = x.im / x.re | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
| rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)] | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.220_0.CflASCTDE9UCom5 | @[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℝ
hx : 0 ≤ x
⊢ arg ↑x = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by | simp [arg, hx] | theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.227_0.CflASCTDE9UCom5 | theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
| refine' ⟨fun h => _, _⟩ | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_1
z : ℂ
h : arg z = 0
⊢ 0 ≤ z.re ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· | rw [← abs_mul_cos_add_sin_mul_I z, h] | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_1
z : ℂ
h : arg z = 0
⊢ 0 ≤ (↑(abs z) * (cos ↑0 + sin ↑0 * I)).re ∧ (↑(abs z) * (cos ↑0 + sin ↑0 * I)).im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
| simp [abs.nonneg] | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_2
z : ℂ
⊢ 0 ≤ z.re ∧ z.im = 0 → arg z = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· | cases' z with x y | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_2.mk
x y : ℝ
⊢ 0 ≤ { re := x, im := y }.re ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
| rintro ⟨h, rfl : y = 0⟩ | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case refine'_2.mk.intro
x : ℝ
h : 0 ≤ { re := x, im := 0 }.re
⊢ arg { re := x, im := 0 } = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
| exact arg_ofReal_of_nonneg h | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.230_0.CflASCTDE9UCom5 | theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
| by_cases h₀ : z = 0 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0
case neg z : ℂ h₀ : ¬z = 0 ⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; | simp [h₀, lt_irrefl, Real.pi_ne_zero.symm] | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; | Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π ↔ z.re < 0 ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
| constructor | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π → z.re < 0 ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· | intro h | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π
⊢ z.re < 0 ∧ z.im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
| rw [← abs_mul_cos_add_sin_mul_I z, h] | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π
⊢ (↑(abs z) * (cos ↑π + sin ↑π * I)).re < 0 ∧ (↑(abs z) * (cos ↑π + sin ↑π * I)).im = 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| simp [h₀] | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re < 0 ∧ z.im = 0 → arg z = π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | cases' z with x y | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re < 0 ∧ { re := x, im := y }.im = 0 → arg { re := x, im := y } = π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| rintro ⟨h : x < 0, rfl : y = 0⟩ | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk.intro
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ arg { re := x, im := 0 } = π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
| rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)] | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk.intro
x : ℝ
h : x < 0
h₀ : ¬{ re := x, im := 0 } = 0
⊢ arg { re := x, im := 0 } = arg (↑(-x) * -1) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
| simp [← ofReal_def] | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.239_0.CflASCTDE9UCom5 | theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
| rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff] | theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.251_0.CflASCTDE9UCom5 | theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
| by_cases h₀ : z = 0 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · | simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne] | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · | Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
| constructor | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = π / 2 → z.re = 0 ∧ 0 < z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· | intro h | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π / 2
⊢ z.re = 0 ∧ 0 < z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
| rw [← abs_mul_cos_add_sin_mul_I z, h] | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = π / 2
⊢ (↑(abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).re = 0 ∧ 0 < (↑(abs z) * (cos ↑(π / 2) + sin ↑(π / 2) * I)).im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| simp [h₀] | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re = 0 ∧ 0 < z.im → arg z = π / 2 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | cases' z with x y | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re = 0 ∧ 0 < { re := x, im := y }.im → arg { re := x, im := y } = π / 2 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| rintro ⟨rfl : x = 0, hy : 0 < y⟩ | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : 0 < y
⊢ arg { re := 0, im := y } = π / 2 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
| rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one] | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.259_0.CflASCTDE9UCom5 | theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
| by_cases h₀ : z = 0 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
z : ℂ
h₀ : z = 0
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · | simp [h₀, lt_irrefl, Real.pi_ne_zero] | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · | Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
z : ℂ
h₀ : ¬z = 0
⊢ arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
| constructor | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
⊢ arg z = -(π / 2) → z.re = 0 ∧ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· | intro h | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = -(π / 2)
⊢ z.re = 0 ∧ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
| rw [← abs_mul_cos_add_sin_mul_I z, h] | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mp
z : ℂ
h₀ : ¬z = 0
h : arg z = -(π / 2)
⊢ (↑(abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).re = 0 ∧
(↑(abs z) * (cos ↑(-(π / 2)) + sin ↑(-(π / 2)) * I)).im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| simp [h₀] | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr
z : ℂ
h₀ : ¬z = 0
⊢ z.re = 0 ∧ z.im < 0 → arg z = -(π / 2) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | cases' z with x y | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk
x y : ℝ
h₀ : ¬{ re := x, im := y } = 0
⊢ { re := x, im := y }.re = 0 ∧ { re := x, im := y }.im < 0 → arg { re := x, im := y } = -(π / 2) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| rintro ⟨rfl : x = 0, hy : y < 0⟩ | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : y < 0
⊢ arg { re := 0, im := y } = -(π / 2) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
| rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I] | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg.mpr.mk.intro
y : ℝ
h₀ : ¬{ re := 0, im := y } = 0
hy : y < 0
⊢ arg (↑0 + ↑y * I) = arg (↑(-y) * -I) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
| simp | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.270_0.CflASCTDE9UCom5 | theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hx_re : x.re < 0
hx_im : 0 ≤ x.im
⊢ arg x = arcsin ((-x).im / abs x) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
| simp only [arg, hx_re.not_le, hx_im, if_true, if_false] | theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.286_0.CflASCTDE9UCom5 | theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hx_re : x.re < 0
hx_im : x.im < 0
⊢ arg x = arcsin ((-x).im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
| simp only [arg, hx_re.not_le, hx_im.not_le, if_false] | theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.291_0.CflASCTDE9UCom5 | theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
h₁ : 0 ≤ z.im
h₂ : z ≠ 0
⊢ arg z = arccos (z.re / abs z) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
| rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)] | theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.296_0.CflASCTDE9UCom5 | theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
hz : z.im < 0
⊢ arg z = -arccos (z.re / abs z) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
| have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.305_0.CflASCTDE9UCom5 | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
hz : z.im < 0
h₀ : z ≠ 0
⊢ arg z = -arccos (z.re / abs z) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
| rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg] | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.305_0.CflASCTDE9UCom5 | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case hx₁
z : ℂ
hz : z.im < 0
h₀ : z ≠ 0
⊢ 0 ≤ -arg z
case hx₂ z : ℂ hz : z.im < 0 h₀ : z ≠ 0 ⊢ -arg z ≤ π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
| exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le] | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.305_0.CflASCTDE9UCom5 | theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ arg ((starRingEnd ℂ) x) = if arg x = π then π else -arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
| simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
| rcases lt_trichotomy x.re 0 with (hr | hr | hr) | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
x : ℂ
hr : x.re < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
x : ℂ
hr : x.re = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
x : ℂ
hr : 0 < x.re
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| rcases lt_trichotomy x.im 0 with (hi | hi | hi) | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl.inl
x : ℂ
hr : x.re < 0
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl.inr.inl
x : ℂ
hr : x.re < 0
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· | simp [hr, hr.not_le, hi] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl.inr.inr
x : ℂ
hr : x.re < 0
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· | simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inl
x : ℂ
hr : x.re = 0
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· | simp [hr] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inl
x : ℂ
hr : x.re = 0
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· | simp [hr] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl.inr.inr
x : ℂ
hr : x.re = 0
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· | simp [hr] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr.inl
x : ℂ
hr : 0 < x.re
hi : x.im < 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· | simp [hr, hr.le, hi.ne] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr.inr.inl
x : ℂ
hr : 0 < x.re
hi : x.im = 0
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· | simp [hr, hr.le, hr.le.not_lt] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr.inr.inr
x : ℂ
hr : 0 < x.re
hi : 0 < x.im
⊢ (if 0 ≤ x.re then -arcsin (x.im / abs x)
else if 0 ≤ -x.im then arcsin (x.im / abs x) + π else arcsin (x.im / abs x) - π) =
if x.re < 0 ∧ x.im = 0 then π
else
-if 0 ≤ x.re then arcsin (x.im / abs x)
else if 0 ≤ x.im then -arcsin (x.im / abs x) + π else -arcsin (x.im / abs x) - π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· | simp [hr, hr.le, hr.le.not_lt] | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.311_0.CflASCTDE9UCom5 | theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ arg x⁻¹ = if arg x = π then π else -arg x | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
| rw [← arg_conj, inv_def, mul_comm] | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.327_0.CflASCTDE9UCom5 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
⊢ arg (↑(normSq x)⁻¹ * (starRingEnd ℂ) x) = arg ((starRingEnd ℂ) x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
| by_cases hx : x = 0 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.327_0.CflASCTDE9UCom5 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case pos
x : ℂ
hx : x = 0
⊢ arg (↑(normSq x)⁻¹ * (starRingEnd ℂ) x) = arg ((starRingEnd ℂ) x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· | simp [hx] | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.327_0.CflASCTDE9UCom5 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case neg
x : ℂ
hx : ¬x = 0
⊢ arg (↑(normSq x)⁻¹ * (starRingEnd ℂ) x) = arg ((starRingEnd ℂ) x) | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· | exact arg_real_mul (conj x) (by simp [hx]) | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.327_0.CflASCTDE9UCom5 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
x : ℂ
hx : ¬x = 0
⊢ 0 < (normSq x)⁻¹ | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by | simp [hx] | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by | Mathlib.Analysis.SpecialFunctions.Complex.Arg.327_0.CflASCTDE9UCom5 | theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
| rcases le_or_lt 0 (re z) with hre | hre | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
z : ℂ
hre : 0 ≤ z.re
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· | simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr
z : ℂ
hre : z.re < 0
⊢ arg z ≤ π / 2 ↔ 0 ≤ z.re ∨ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
| simp only [hre.not_le, false_or_iff] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr
z : ℂ
hre : z.re < 0
⊢ arg z ≤ π / 2 ↔ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
| rcases le_or_lt 0 (im z) with him | him | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ arg z ≤ π / 2 ↔ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· | simp only [him.not_lt] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ arg z ≤ π / 2 ↔ False | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
| rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ z.re ≠ 0
case inr.inl z : ℂ hre : z.re < 0 him : 0 ≤ z.im ⊢ 0 < abs z | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
| exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arg z ≤ π / 2 ↔ z.im < 0 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· | simp only [him] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arg z ≤ π / 2 ↔ True | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
| rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him] | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inr
z : ℂ
hre : z.re < 0
him : z.im < 0
⊢ arcsin ((-z).im / abs z) - π ≤ π / 2 | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
| exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _) | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.334_0.CflASCTDE9UCom5 | theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
z : ℂ
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
| rcases le_or_lt 0 (re z) with hre | hre | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inl
z : ℂ
hre : 0 ≤ z.re
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· | simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr
z : ℂ
hre : z.re < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.re ∨ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
| simp only [hre.not_le, false_or_iff] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr
z : ℂ
hre : z.re < 0
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
| rcases le_or_lt 0 (im z) with him | him | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arg z ↔ 0 ≤ z.im | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· | simp only [him] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· | Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arg z ↔ True | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
| rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him] | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
case inr.inl
z : ℂ
hre : z.re < 0
him : 0 ≤ z.im
⊢ -(π / 2) ≤ arcsin ((-z).im / abs z) + π | /-
Copyright (c) 2018 Chris Hughes. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Chris Hughes, Abhimanyu Pallavi Sudhir, Jean Lo, Calle Sönne, Benjamin Davidson
-/
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Angle
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Inverse
#align_import analysis.special_functions.complex.arg from "leanprover-community/mathlib"@"2c1d8ca2812b64f88992a5294ea3dba144755cd1"
/-!
# The argument of a complex number.
We define `arg : ℂ → ℝ`, returning a real number in the range (-π, π],
such that for `x ≠ 0`, `sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
while `arg 0` defaults to `0`
-/
noncomputable section
namespace Complex
open ComplexConjugate Real Topology
open Filter Set
/-- `arg` returns values in the range (-π, π], such that for `x ≠ 0`,
`sin (arg x) = x.im / x.abs` and `cos (arg x) = x.re / x.abs`,
`arg 0` defaults to `0` -/
noncomputable def arg (x : ℂ) : ℝ :=
if 0 ≤ x.re then Real.arcsin (x.im / abs x)
else if 0 ≤ x.im then Real.arcsin ((-x).im / abs x) + π else Real.arcsin ((-x).im / abs x) - π
#align complex.arg Complex.arg
theorem sin_arg (x : ℂ) : Real.sin (arg x) = x.im / abs x := by
unfold arg; split_ifs <;>
simp [sub_eq_add_neg, arg,
Real.sin_arcsin (abs_le.1 (abs_im_div_abs_le_one x)).1 (abs_le.1 (abs_im_div_abs_le_one x)).2,
Real.sin_add, neg_div, Real.arcsin_neg, Real.sin_neg]
#align complex.sin_arg Complex.sin_arg
theorem cos_arg {x : ℂ} (hx : x ≠ 0) : Real.cos (arg x) = x.re / abs x := by
rw [arg]
split_ifs with h₁ h₂
· rw [Real.cos_arcsin]
field_simp [Real.sqrt_sq, (abs.pos hx).le, *]
· rw [Real.cos_add_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
· rw [Real.cos_sub_pi, Real.cos_arcsin]
field_simp [Real.sqrt_div (sq_nonneg _), Real.sqrt_sq_eq_abs,
_root_.abs_of_neg (not_le.1 h₁), *]
#align complex.cos_arg Complex.cos_arg
@[simp]
theorem abs_mul_exp_arg_mul_I (x : ℂ) : ↑(abs x) * exp (arg x * I) = x := by
rcases eq_or_ne x 0 with (rfl | hx)
· simp
· have : abs x ≠ 0 := abs.ne_zero hx
apply Complex.ext <;> field_simp [sin_arg, cos_arg hx, this, mul_comm (abs x)]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_exp_arg_mul_I Complex.abs_mul_exp_arg_mul_I
@[simp]
theorem abs_mul_cos_add_sin_mul_I (x : ℂ) : (abs x * (cos (arg x) + sin (arg x) * I) : ℂ) = x := by
rw [← exp_mul_I, abs_mul_exp_arg_mul_I]
set_option linter.uppercaseLean3 false in
#align complex.abs_mul_cos_add_sin_mul_I Complex.abs_mul_cos_add_sin_mul_I
@[simp]
lemma abs_mul_cos_arg (x : ℂ) : abs x * Real.cos (arg x) = x.re := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg re (abs_mul_cos_add_sin_mul_I x)
@[simp]
lemma abs_mul_sin_arg (x : ℂ) : abs x * Real.sin (arg x) = x.im := by
simpa [-abs_mul_cos_add_sin_mul_I] using congr_arg im (abs_mul_cos_add_sin_mul_I x)
theorem abs_eq_one_iff (z : ℂ) : abs z = 1 ↔ ∃ θ : ℝ, exp (θ * I) = z := by
refine' ⟨fun hz => ⟨arg z, _⟩, _⟩
· calc
exp (arg z * I) = abs z * exp (arg z * I) := by rw [hz, ofReal_one, one_mul]
_ = z := abs_mul_exp_arg_mul_I z
· rintro ⟨θ, rfl⟩
exact Complex.abs_exp_ofReal_mul_I θ
#align complex.abs_eq_one_iff Complex.abs_eq_one_iff
@[simp]
theorem range_exp_mul_I : (Set.range fun x : ℝ => exp (x * I)) = Metric.sphere 0 1 := by
ext x
simp only [mem_sphere_zero_iff_norm, norm_eq_abs, abs_eq_one_iff, Set.mem_range]
set_option linter.uppercaseLean3 false in
#align complex.range_exp_mul_I Complex.range_exp_mul_I
theorem arg_mul_cos_add_sin_mul_I {r : ℝ} (hr : 0 < r) {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) :
arg (r * (cos θ + sin θ * I)) = θ := by
simp only [arg, map_mul, abs_cos_add_sin_mul_I, abs_of_nonneg hr.le, mul_one]
simp only [ofReal_mul_re, ofReal_mul_im, neg_im, ← ofReal_cos, ← ofReal_sin, ←
mk_eq_add_mul_I, neg_div, mul_div_cancel_left _ hr.ne', mul_nonneg_iff_right_nonneg_of_pos hr]
by_cases h₁ : θ ∈ Set.Icc (-(π / 2)) (π / 2)
· rw [if_pos]
exacts [Real.arcsin_sin' h₁, Real.cos_nonneg_of_mem_Icc h₁]
· rw [Set.mem_Icc, not_and_or, not_le, not_le] at h₁
cases' h₁ with h₁ h₁
· replace hθ := hθ.1
have hcos : Real.cos θ < 0 := by
rw [← neg_pos, ← Real.cos_add_pi]
refine' Real.cos_pos_of_mem_Ioo ⟨_, _⟩ <;> linarith
have hsin : Real.sin θ < 0 := Real.sin_neg_of_neg_of_neg_pi_lt (by linarith) hθ
rw [if_neg, if_neg, ← Real.sin_add_pi, Real.arcsin_sin, add_sub_cancel] <;> [linarith;
linarith; exact hsin.not_le; exact hcos.not_le]
· replace hθ := hθ.2
have hcos : Real.cos θ < 0 := Real.cos_neg_of_pi_div_two_lt_of_lt h₁ (by linarith)
have hsin : 0 ≤ Real.sin θ := Real.sin_nonneg_of_mem_Icc ⟨by linarith, hθ⟩
rw [if_neg, if_pos, ← Real.sin_sub_pi, Real.arcsin_sin, sub_add_cancel] <;> [linarith;
linarith; exact hsin; exact hcos.not_le]
set_option linter.uppercaseLean3 false in
#align complex.arg_mul_cos_add_sin_mul_I Complex.arg_mul_cos_add_sin_mul_I
theorem arg_cos_add_sin_mul_I {θ : ℝ} (hθ : θ ∈ Set.Ioc (-π) π) : arg (cos θ + sin θ * I) = θ := by
rw [← one_mul (_ + _), ← ofReal_one, arg_mul_cos_add_sin_mul_I zero_lt_one hθ]
set_option linter.uppercaseLean3 false in
#align complex.arg_cos_add_sin_mul_I Complex.arg_cos_add_sin_mul_I
@[simp]
theorem arg_zero : arg 0 = 0 := by simp [arg, le_refl]
#align complex.arg_zero Complex.arg_zero
theorem ext_abs_arg {x y : ℂ} (h₁ : abs x = abs y) (h₂ : x.arg = y.arg) : x = y := by
rw [← abs_mul_exp_arg_mul_I x, ← abs_mul_exp_arg_mul_I y, h₁, h₂]
#align complex.ext_abs_arg Complex.ext_abs_arg
theorem ext_abs_arg_iff {x y : ℂ} : x = y ↔ abs x = abs y ∧ arg x = arg y :=
⟨fun h => h ▸ ⟨rfl, rfl⟩, and_imp.2 ext_abs_arg⟩
#align complex.ext_abs_arg_iff Complex.ext_abs_arg_iff
theorem arg_mem_Ioc (z : ℂ) : arg z ∈ Set.Ioc (-π) π := by
have hπ : 0 < π := Real.pi_pos
rcases eq_or_ne z 0 with (rfl | hz); simp [hπ, hπ.le]
rcases existsUnique_add_zsmul_mem_Ioc Real.two_pi_pos (arg z) (-π) with ⟨N, hN, -⟩
rw [two_mul, neg_add_cancel_left, ← two_mul, zsmul_eq_mul] at hN
rw [← abs_mul_cos_add_sin_mul_I z, ← cos_add_int_mul_two_pi _ N, ← sin_add_int_mul_two_pi _ N]
have := arg_mul_cos_add_sin_mul_I (abs.pos hz) hN
push_cast at this
rwa [this]
#align complex.arg_mem_Ioc Complex.arg_mem_Ioc
@[simp]
theorem range_arg : Set.range arg = Set.Ioc (-π) π :=
(Set.range_subset_iff.2 arg_mem_Ioc).antisymm fun _ hx => ⟨_, arg_cos_add_sin_mul_I hx⟩
#align complex.range_arg Complex.range_arg
theorem arg_le_pi (x : ℂ) : arg x ≤ π :=
(arg_mem_Ioc x).2
#align complex.arg_le_pi Complex.arg_le_pi
theorem neg_pi_lt_arg (x : ℂ) : -π < arg x :=
(arg_mem_Ioc x).1
#align complex.neg_pi_lt_arg Complex.neg_pi_lt_arg
theorem abs_arg_le_pi (z : ℂ) : |arg z| ≤ π :=
abs_le.2 ⟨(neg_pi_lt_arg z).le, arg_le_pi z⟩
#align complex.abs_arg_le_pi Complex.abs_arg_le_pi
@[simp]
theorem arg_nonneg_iff {z : ℂ} : 0 ≤ arg z ↔ 0 ≤ z.im := by
rcases eq_or_ne z 0 with (rfl | h₀); · simp
calc
0 ≤ arg z ↔ 0 ≤ Real.sin (arg z) :=
⟨fun h => Real.sin_nonneg_of_mem_Icc ⟨h, arg_le_pi z⟩, by
contrapose!
intro h
exact Real.sin_neg_of_neg_of_neg_pi_lt h (neg_pi_lt_arg _)⟩
_ ↔ _ := by rw [sin_arg, le_div_iff (abs.pos h₀), zero_mul]
#align complex.arg_nonneg_iff Complex.arg_nonneg_iff
@[simp]
theorem arg_neg_iff {z : ℂ} : arg z < 0 ↔ z.im < 0 :=
lt_iff_lt_of_le_iff_le arg_nonneg_iff
#align complex.arg_neg_iff Complex.arg_neg_iff
theorem arg_real_mul (x : ℂ) {r : ℝ} (hr : 0 < r) : arg (r * x) = arg x := by
rcases eq_or_ne x 0 with (rfl | hx); · rw [mul_zero]
conv_lhs =>
rw [← abs_mul_cos_add_sin_mul_I x, ← mul_assoc, ← ofReal_mul,
arg_mul_cos_add_sin_mul_I (mul_pos hr (abs.pos hx)) x.arg_mem_Ioc]
#align complex.arg_real_mul Complex.arg_real_mul
theorem arg_mul_real {r : ℝ} (hr : 0 < r) (x : ℂ) : arg (x * r) = arg x :=
mul_comm x r ▸ arg_real_mul x hr
theorem arg_eq_arg_iff {x y : ℂ} (hx : x ≠ 0) (hy : y ≠ 0) :
arg x = arg y ↔ (abs y / abs x : ℂ) * x = y := by
simp only [ext_abs_arg_iff, map_mul, map_div₀, abs_ofReal, abs_abs,
div_mul_cancel _ (abs.ne_zero hx), eq_self_iff_true, true_and_iff]
rw [← ofReal_div, arg_real_mul]
exact div_pos (abs.pos hy) (abs.pos hx)
#align complex.arg_eq_arg_iff Complex.arg_eq_arg_iff
@[simp]
theorem arg_one : arg 1 = 0 := by simp [arg, zero_le_one]
#align complex.arg_one Complex.arg_one
@[simp]
theorem arg_neg_one : arg (-1) = π := by simp [arg, le_refl, not_le.2 (zero_lt_one' ℝ)]
#align complex.arg_neg_one Complex.arg_neg_one
@[simp]
theorem arg_I : arg I = π / 2 := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_I Complex.arg_I
@[simp]
theorem arg_neg_I : arg (-I) = -(π / 2) := by simp [arg, le_refl]
set_option linter.uppercaseLean3 false in
#align complex.arg_neg_I Complex.arg_neg_I
@[simp]
theorem tan_arg (x : ℂ) : Real.tan (arg x) = x.im / x.re := by
by_cases h : x = 0
· simp only [h, zero_div, Complex.zero_im, Complex.arg_zero, Real.tan_zero, Complex.zero_re]
rw [Real.tan_eq_sin_div_cos, sin_arg, cos_arg h, div_div_div_cancel_right _ (abs.ne_zero h)]
#align complex.tan_arg Complex.tan_arg
theorem arg_ofReal_of_nonneg {x : ℝ} (hx : 0 ≤ x) : arg x = 0 := by simp [arg, hx]
#align complex.arg_of_real_of_nonneg Complex.arg_ofReal_of_nonneg
theorem arg_eq_zero_iff {z : ℂ} : arg z = 0 ↔ 0 ≤ z.re ∧ z.im = 0 := by
refine' ⟨fun h => _, _⟩
· rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [abs.nonneg]
· cases' z with x y
rintro ⟨h, rfl : y = 0⟩
exact arg_ofReal_of_nonneg h
#align complex.arg_eq_zero_iff Complex.arg_eq_zero_iff
theorem arg_eq_pi_iff {z : ℂ} : arg z = π ↔ z.re < 0 ∧ z.im = 0 := by
by_cases h₀ : z = 0; simp [h₀, lt_irrefl, Real.pi_ne_zero.symm]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨h : x < 0, rfl : y = 0⟩
rw [← arg_neg_one, ← arg_real_mul (-1) (neg_pos.2 h)]
simp [← ofReal_def]
#align complex.arg_eq_pi_iff Complex.arg_eq_pi_iff
theorem arg_lt_pi_iff {z : ℂ} : arg z < π ↔ 0 ≤ z.re ∨ z.im ≠ 0 := by
rw [(arg_le_pi z).lt_iff_ne, not_iff_comm, not_or, not_le, Classical.not_not, arg_eq_pi_iff]
#align complex.arg_lt_pi_iff Complex.arg_lt_pi_iff
theorem arg_ofReal_of_neg {x : ℝ} (hx : x < 0) : arg x = π :=
arg_eq_pi_iff.2 ⟨hx, rfl⟩
#align complex.arg_of_real_of_neg Complex.arg_ofReal_of_neg
theorem arg_eq_pi_div_two_iff {z : ℂ} : arg z = π / 2 ↔ z.re = 0 ∧ 0 < z.im := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_div_two_pos.ne]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : 0 < y⟩
rw [← arg_I, ← arg_real_mul I hy, ofReal_mul', I_re, I_im, mul_zero, mul_one]
#align complex.arg_eq_pi_div_two_iff Complex.arg_eq_pi_div_two_iff
theorem arg_eq_neg_pi_div_two_iff {z : ℂ} : arg z = -(π / 2) ↔ z.re = 0 ∧ z.im < 0 := by
by_cases h₀ : z = 0; · simp [h₀, lt_irrefl, Real.pi_ne_zero]
constructor
· intro h
rw [← abs_mul_cos_add_sin_mul_I z, h]
simp [h₀]
· cases' z with x y
rintro ⟨rfl : x = 0, hy : y < 0⟩
rw [← arg_neg_I, ← arg_real_mul (-I) (neg_pos.2 hy), mk_eq_add_mul_I]
simp
#align complex.arg_eq_neg_pi_div_two_iff Complex.arg_eq_neg_pi_div_two_iff
theorem arg_of_re_nonneg {x : ℂ} (hx : 0 ≤ x.re) : arg x = Real.arcsin (x.im / abs x) :=
if_pos hx
#align complex.arg_of_re_nonneg Complex.arg_of_re_nonneg
theorem arg_of_re_neg_of_im_nonneg {x : ℂ} (hx_re : x.re < 0) (hx_im : 0 ≤ x.im) :
arg x = Real.arcsin ((-x).im / abs x) + π := by
simp only [arg, hx_re.not_le, hx_im, if_true, if_false]
#align complex.arg_of_re_neg_of_im_nonneg Complex.arg_of_re_neg_of_im_nonneg
theorem arg_of_re_neg_of_im_neg {x : ℂ} (hx_re : x.re < 0) (hx_im : x.im < 0) :
arg x = Real.arcsin ((-x).im / abs x) - π := by
simp only [arg, hx_re.not_le, hx_im.not_le, if_false]
#align complex.arg_of_re_neg_of_im_neg Complex.arg_of_re_neg_of_im_neg
theorem arg_of_im_nonneg_of_ne_zero {z : ℂ} (h₁ : 0 ≤ z.im) (h₂ : z ≠ 0) :
arg z = Real.arccos (z.re / abs z) := by
rw [← cos_arg h₂, Real.arccos_cos (arg_nonneg_iff.2 h₁) (arg_le_pi _)]
#align complex.arg_of_im_nonneg_of_ne_zero Complex.arg_of_im_nonneg_of_ne_zero
theorem arg_of_im_pos {z : ℂ} (hz : 0 < z.im) : arg z = Real.arccos (z.re / abs z) :=
arg_of_im_nonneg_of_ne_zero hz.le fun h => hz.ne' <| h.symm ▸ rfl
#align complex.arg_of_im_pos Complex.arg_of_im_pos
theorem arg_of_im_neg {z : ℂ} (hz : z.im < 0) : arg z = -Real.arccos (z.re / abs z) := by
have h₀ : z ≠ 0 := mt (congr_arg im) hz.ne
rw [← cos_arg h₀, ← Real.cos_neg, Real.arccos_cos, neg_neg]
exacts [neg_nonneg.2 (arg_neg_iff.2 hz).le, neg_le.2 (neg_pi_lt_arg z).le]
#align complex.arg_of_im_neg Complex.arg_of_im_neg
theorem arg_conj (x : ℂ) : arg (conj x) = if arg x = π then π else -arg x := by
simp_rw [arg_eq_pi_iff, arg, neg_im, conj_im, conj_re, abs_conj, neg_div, neg_neg,
Real.arcsin_neg]
rcases lt_trichotomy x.re 0 with (hr | hr | hr) <;>
rcases lt_trichotomy x.im 0 with (hi | hi | hi)
· simp [hr, hr.not_le, hi.le, hi.ne, not_le.2 hi, add_comm]
· simp [hr, hr.not_le, hi]
· simp [hr, hr.not_le, hi.ne.symm, hi.le, not_le.2 hi, sub_eq_neg_add]
· simp [hr]
· simp [hr]
· simp [hr]
· simp [hr, hr.le, hi.ne]
· simp [hr, hr.le, hr.le.not_lt]
· simp [hr, hr.le, hr.le.not_lt]
#align complex.arg_conj Complex.arg_conj
theorem arg_inv (x : ℂ) : arg x⁻¹ = if arg x = π then π else -arg x := by
rw [← arg_conj, inv_def, mul_comm]
by_cases hx : x = 0
· simp [hx]
· exact arg_real_mul (conj x) (by simp [hx])
#align complex.arg_inv Complex.arg_inv
theorem arg_le_pi_div_two_iff {z : ℂ} : arg z ≤ π / 2 ↔ 0 ≤ re z ∨ im z < 0 := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.arcsin_le_pi_div_two, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him.not_lt]
rw [iff_false_iff, not_le, arg_of_re_neg_of_im_nonneg hre him, ← sub_lt_iff_lt_add, half_sub,
Real.neg_pi_div_two_lt_arcsin, neg_im, neg_div, neg_lt_neg_iff, div_lt_one, ←
_root_.abs_of_nonneg him, abs_im_lt_abs]
exacts [hre.ne, abs.pos <| ne_of_apply_ne re hre.ne]
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_neg hre him]
exact (sub_le_self _ Real.pi_pos.le).trans (Real.arcsin_le_pi_div_two _)
#align complex.arg_le_pi_div_two_iff Complex.arg_le_pi_div_two_iff
theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
| exact (Real.neg_pi_div_two_le_arcsin _).trans (le_add_of_nonneg_right Real.pi_pos.le) | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z := by
rcases le_or_lt 0 (re z) with hre | hre
· simp only [hre, arg_of_re_nonneg hre, Real.neg_pi_div_two_le_arcsin, true_or_iff]
simp only [hre.not_le, false_or_iff]
rcases le_or_lt 0 (im z) with him | him
· simp only [him]
rw [iff_true_iff, arg_of_re_neg_of_im_nonneg hre him]
| Mathlib.Analysis.SpecialFunctions.Complex.Arg.349_0.CflASCTDE9UCom5 | theorem neg_pi_div_two_le_arg_iff {z : ℂ} : -(π / 2) ≤ arg z ↔ 0 ≤ re z ∨ 0 ≤ im z | Mathlib_Analysis_SpecialFunctions_Complex_Arg |
Subsets and Splits