state
stringlengths
0
159k
srcUpToTactic
stringlengths
387
167k
nextTactic
stringlengths
3
9k
declUpToTactic
stringlengths
22
11.5k
declId
stringlengths
38
95
decl
stringlengths
16
1.89k
file_tag
stringlengths
17
73
case h₁.refine'_1 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x p : β„• x✝ : p ∈ Finset.filter (fun x => x ≀ sqrt (2 * n)) S ⊒ f p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β·
exact pow_factorization_choose_le (mul_pos two_pos n_pos)
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β·
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case h₁.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ ∏ i in Finset.filter (fun x => x ≀ sqrt (2 * n)) S, 2 * n ≀ (2 * n) ^ sqrt (2 * n)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos)
have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel]
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos)
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ Finset.card (Finset.Icc 1 (sqrt (2 * n))) = sqrt (2 * n)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by
rw [card_Icc, Nat.add_sub_cancel]
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case h₁.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this✝ : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x this : Finset.card (Finset.Icc 1 (sqrt (2 * n))) = sqrt (2 * n) ⊒ ∏ i in Finset.filter (fun x => x ≀ sqrt (2 * n)) S, 2 * n ≀ (2 * n) ^ sqrt (2 * n)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel]
rw [Finset.prod_const]
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel]
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case h₁.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this✝ : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x this : Finset.card (Finset.Icc 1 (sqrt (2 * n))) = sqrt (2 * n) ⊒ (2 * n) ^ Finset.card (Finset.filter (fun x => x ≀ sqrt (2 * n)) S) ≀ (2 * n) ^ sqrt (2 * n)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const]
refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le)
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const]
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case h₁.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this✝ : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x this : Finset.card (Finset.Icc 1 (sqrt (2 * n))) = sqrt (2 * n) x : β„• hx : x ∈ Finset.filter (fun x => x ≀ sqrt (2 * n)) S ⊒ x ∈ Finset.Icc 1 (sqrt (2 * n))
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le)
obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le)
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case h₁.refine'_2.intro n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this✝ : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x this : Finset.card (Finset.Icc 1 (sqrt (2 * n))) = sqrt (2 * n) x : β„• hx : x ∈ Finset.filter (fun x => x ≀ sqrt (2 * n)) S h1 : x ∈ S h2 : x ≀ sqrt (2 * n) ⊒ x ∈ Finset.Icc 1 (sqrt (2 * n))
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx
exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚ n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ ∏ x in Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S, f x ≀ 4 ^ (2 * n / 3)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β·
refine' le_trans _ (primorial_le_4_pow (2 * n / 3))
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β·
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚ n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ ∏ x in Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S, f x ≀ primorial (2 * n / 3)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3))
refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3))
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚.refine'_1 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x p : β„• hp : p ∈ Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S ⊒ f p ≀ p
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β·
obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β·
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚.refine'_1.intro n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x p : β„• hp : p ∈ Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S h1 : p ∈ S h2 : Β¬p ≀ sqrt (2 * n) ⊒ f p ≀ p
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp
refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚.refine'_1.intro n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x p : β„• hp : p ∈ Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S h1 : p ∈ S h2 : Β¬p ≀ sqrt (2 * n) ⊒ (Nat.factorization (centralBinom n)) p ≀ 1
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le
exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2)
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ ∏ i in Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S, i ≀ primorial (2 * n / 3)
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2)
refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2)
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
case hβ‚‚.refine'_2 n : β„• n_big : 2 < n no_prime : Β¬βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n n_pos : 0 < n n2_pos : 1 ≀ 2 * n S : Finset β„• := Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)) f : β„• β†’ β„• := fun x => x ^ (Nat.factorization (centralBinom n)) x this : ∏ x in S, f x = ∏ x in Finset.range (2 * n / 3 + 1), f x ⊒ βˆ€ i ∈ Finset.filter Nat.Prime (Finset.range (2 * n / 3 + 1)), i βˆ‰ Finset.filter (fun x => Β¬x ≀ sqrt (2 * n)) S β†’ 1 ≀ i
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _
exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _
Mathlib.NumberTheory.Bertrand.155_0.gJXoOT9Ce2wC0xc
/-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range.
by_contra no_prime
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range.
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n ⊒ False
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n.
have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n.
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n ⊒ False
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big
have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big)
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n ⊒ 4 ≀ 512
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by
norm_num1
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n H2 : 4 ^ n < n * centralBinom n ⊒ False
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big)
have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big)
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n H2 : 4 ^ n < n * centralBinom n ⊒ 2 < 512
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by
norm_num1
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n H2 : 4 ^ n < n * centralBinom n H3 : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ⊒ False
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime
rw [mul_assoc] at H1
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• n_big : 512 ≀ n no_prime : Β¬βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n H1 : n * ((2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3)) ≀ 4 ^ n H2 : 4 ^ n < n * centralBinom n H3 : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ⊒ False
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1;
exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1)
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1;
Mathlib.NumberTheory.Bertrand.195_0.gJXoOT9Ce2wC0xc
/-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n q p : β„• prime_p : Prime p covering : p ≀ 2 * q H : n < q β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n hn : n < p ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by
by_cases h : p ≀ 2 * n
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by
Mathlib.NumberTheory.Bertrand.212_0.gJXoOT9Ce2wC0xc
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case pos n q p : β„• prime_p : Prime p covering : p ≀ 2 * q H : n < q β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n hn : n < p h : p ≀ 2 * n ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β·
exact ⟨p, prime_p, hn, h⟩
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β·
Mathlib.NumberTheory.Bertrand.212_0.gJXoOT9Ce2wC0xc
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case neg n q p : β„• prime_p : Prime p covering : p ≀ 2 * q H : n < q β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n hn : n < p h : Β¬p ≀ 2 * n ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩
exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering))
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩
Mathlib.NumberTheory.Bertrand.212_0.gJXoOT9Ce2wC0xc
/-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• hn0 : n β‰  0 ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small
cases' lt_or_le 511 n with h h
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inl n : β„• hn0 : n β‰  0 h : 511 < n ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β·
exact exists_prime_lt_and_le_two_mul_eventually n h
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β·
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 h : n ≀ 511 ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h
replace h : n < 521 := h.trans_lt (by norm_num1)
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
n : β„• hn0 : n β‰  0 h : n ≀ 511 ⊒ 511 < 521
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by
norm_num1
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 h : n < 521 ⊒ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1)
revert h
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1)
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 ⊒ n < 521 β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases.
open Lean Elab Tactic in run_tac do for i in [317, 163, 83, 43, 23, 13, 7, 5, 3, 2] do let i : Term := quote i evalTactic <| ← `(tactic| refine' exists_prime_lt_and_le_two_mul_succ $i (by norm_num1) (by norm_num1) _) exact fun h2 => ⟨2, prime_two, h2, Nat.mul_le_mul_left 2 (Nat.pos_of_ne_zero hn0)⟩
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases.
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 ⊒ n < 521 β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in
run_tac do for i in [317, 163, 83, 43, 23, 13, 7, 5, 3, 2] do let i : Term := quote i evalTactic <| ← `(tactic| refine' exists_prime_lt_and_le_two_mul_succ $i (by norm_num1) (by norm_num1) _)
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 ⊒ n < 521 β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in
run_tac do for i in [317, 163, 83, 43, 23, 13, 7, 5, 3, 2] do let i : Term := quote i evalTactic <| ← `(tactic| refine' exists_prime_lt_and_le_two_mul_succ $i (by norm_num1) (by norm_num1) _)
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
case inr n : β„• hn0 : n β‰  0 ⊒ n < 2 β†’ βˆƒ p, Prime p ∧ n < p ∧ p ≀ 2 * n
/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens, Bolton Bailey -/ import Mathlib.Data.Nat.Choose.Factorization import Mathlib.Data.Nat.PrimeNormNum import Mathlib.NumberTheory.Primorial import Mathlib.Analysis.Convex.SpecificFunctions.Basic import Mathlib.Analysis.Convex.SpecificFunctions.Deriv #align_import number_theory.bertrand from "leanprover-community/mathlib"@"a16665637b378379689c566204817ae792ac8b39" /-! # Bertrand's Postulate This file contains a proof of Bertrand's postulate: That between any positive number and its double there is a prime. The proof follows the outline of the ErdΕ‘s proof presented in "Proofs from THE BOOK": One considers the prime factorization of `(2 * n).choose n`, and splits the constituent primes up into various groups, then upper bounds the contribution of each group. This upper bounds the central binomial coefficient, and if the postulate does not hold, this upper bound conflicts with a simple lower bound for large enough `n`. This proves the result holds for large enough `n`, and for smaller `n` an explicit list of primes is provided which covers the remaining cases. As in the [Metamath implementation](carneiro2015arithmetic), we rely on some optimizations from [Shigenori Tochiori](tochiori_bertrand). In particular we use the cleaner bound on the central binomial coefficient given in `Nat.four_pow_lt_mul_centralBinom`. ## References * [M. Aigner and G. M. Ziegler _Proofs from THE BOOK_][aigner1999proofs] * [S. Tochiori, _Considering the Proof of β€œThere is a Prime between n and 2n”_][tochiori_bertrand] * [M. Carneiro, _Arithmetic in Metamath, Case Study: Bertrand's Postulate_][carneiro2015arithmetic] ## Tags Bertrand, prime, binomial coefficients -/ open scoped BigOperators section Real open Real namespace Bertrand /-- A reified version of the `Bertrand.main_inequality` below. This is not best possible: it actually holds for 464 ≀ x. -/ theorem real_main_inequality {x : ℝ} (n_large : (512 : ℝ) ≀ x) : x * (2 * x) ^ sqrt (2 * x) * 4 ^ (2 * x / 3) ≀ 4 ^ x := by let f : ℝ β†’ ℝ := fun x => log x + sqrt (2 * x) * log (2 * x) - log 4 / 3 * x have hf' : βˆ€ x, 0 < x β†’ 0 < x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3) := fun x h => div_pos (mul_pos h (rpow_pos_of_pos (mul_pos two_pos h) _)) (rpow_pos_of_pos four_pos _) have hf : βˆ€ x, 0 < x β†’ f x = log (x * (2 * x) ^ sqrt (2 * x) / 4 ^ (x / 3)) := by intro x h5 have h6 := mul_pos (zero_lt_two' ℝ) h5 have h7 := rpow_pos_of_pos h6 (sqrt (2 * x)) rw [log_div (mul_pos h5 h7).ne' (rpow_pos_of_pos four_pos _).ne', log_mul h5.ne' h7.ne', log_rpow h6, log_rpow zero_lt_four, ← mul_div_right_comm, ← mul_div, mul_comm x] have h5 : 0 < x := lt_of_lt_of_le (by norm_num1) n_large rw [← div_le_one (rpow_pos_of_pos four_pos x), ← div_div_eq_mul_div, ← rpow_sub four_pos, ← mul_div 2 x, mul_div_left_comm, ← mul_one_sub, (by norm_num1 : (1 : ℝ) - 2 / 3 = 1 / 3), mul_one_div, ← log_nonpos_iff (hf' x h5), ← hf x h5] -- porting note: the proof was rewritten, because it was too slow have h : ConcaveOn ℝ (Set.Ioi 0.5) f := by apply ConcaveOn.sub apply ConcaveOn.add exact strictConcaveOn_log_Ioi.concaveOn.subset (Set.Ioi_subset_Ioi (by norm_num)) (convex_Ioi 0.5) convert ((strictConcaveOn_sqrt_mul_log_Ioi.concaveOn.comp_linearMap ((2 : ℝ) β€’ LinearMap.id))) using 1 Β· ext x simp only [Set.mem_Ioi, Set.mem_preimage, LinearMap.smul_apply, LinearMap.id_coe, id_eq, smul_eq_mul] rw [← mul_lt_mul_left (two_pos)] norm_num1 rfl apply ConvexOn.smul refine div_nonneg (log_nonneg (by norm_num1)) (by norm_num1) exact convexOn_id (convex_Ioi (0.5 : ℝ)) suffices βˆƒ x1 x2, 0.5 < x1 ∧ x1 < x2 ∧ x2 ≀ x ∧ 0 ≀ f x1 ∧ f x2 ≀ 0 by obtain ⟨x1, x2, h1, h2, h0, h3, h4⟩ := this exact (h.right_le_of_le_left'' h1 ((h1.trans h2).trans_le h0) h2 h0 (h4.trans h3)).trans h4 refine' ⟨18, 512, by norm_num1, by norm_num1, n_large, _, _⟩ Β· have : sqrt (2 * 18) = 6 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonneg_iff, this] rw [one_le_div] <;> norm_num1 apply le_trans _ (le_mul_of_one_le_left _ _) <;> norm_num1 apply Real.rpow_le_rpow <;> norm_num1 apply rpow_nonneg_of_nonneg; norm_num1 apply rpow_pos_of_pos; norm_num1 apply hf' 18; norm_num1 norm_num1 Β· have : sqrt (2 * 512) = 32 := (sqrt_eq_iff_mul_self_eq_of_pos (by norm_num1)).mpr (by norm_num1) rw [hf, log_nonpos_iff (hf' _ _), this, div_le_one] <;> norm_num1 Β· conv in 512 => equals 2 ^ 9 => norm_num1 conv in 1024 => equals 2 ^ 10 => norm_num1 conv in 32 => rw [← Nat.cast_ofNat] rw [rpow_nat_cast, ← pow_mul, ← pow_add] conv in 4 => equals 2 ^ (2 : ℝ) => rw [rpow_two]; norm_num1 rw [← rpow_mul, ← rpow_nat_cast] apply rpow_le_rpow_of_exponent_le all_goals norm_num1 Β· apply rpow_pos_of_pos four_pos #align bertrand.real_main_inequality Bertrand.real_main_inequality end Bertrand end Real section Nat open Nat /-- The inequality which contradicts Bertrand's postulate, for large enough `n`. -/ theorem bertrand_main_inequality {n : β„•} (n_large : 512 ≀ n) : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := by rw [← @cast_le ℝ] simp only [cast_add, cast_one, cast_mul, cast_pow, ← Real.rpow_nat_cast] refine' _root_.trans ?_ (Bertrand.real_main_inequality (by exact_mod_cast n_large)) gcongr Β· have n2_pos : 0 < 2 * n := by positivity exact mod_cast n2_pos Β· exact_mod_cast Real.nat_sqrt_le_real_sqrt Β· norm_num1 Β· exact cast_div_le.trans (by norm_cast) #align bertrand_main_inequality bertrand_main_inequality /-- A lemma that tells us that, in the case where Bertrand's postulate does not hold, the prime factorization of the central binomial coefficent only has factors at most `2 * n / 3 + 1`. -/ theorem centralBinom_factorization_small (n : β„•) (n_large : 2 < n) (no_prime : Β¬βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) : centralBinom n = ∏ p in Finset.range (2 * n / 3 + 1), p ^ (centralBinom n).factorization p := by refine' (Eq.trans _ n.prod_pow_factorization_centralBinom).symm apply Finset.prod_subset Β· exact Finset.range_subset.2 (add_le_add_right (Nat.div_le_self _ _) _) intro x hx h2x rw [Finset.mem_range, lt_succ_iff] at hx h2x rw [not_le, div_lt_iff_lt_mul' three_pos, mul_comm x] at h2x replace no_prime := not_exists.mp no_prime x rw [← and_assoc, not_and', not_and_or, not_lt] at no_prime cases' no_prime hx with h h Β· rw [factorization_eq_zero_of_non_prime n.centralBinom h, Nat.pow_zero] Β· rw [factorization_centralBinom_of_two_mul_self_lt_three_mul n_large h h2x, Nat.pow_zero] #align central_binom_factorization_small centralBinom_factorization_small /-- An upper bound on the central binomial coefficient used in the proof of Bertrand's postulate. The bound splits the prime factors of `centralBinom n` into those 1. At most `sqrt (2 * n)`, which contribute at most `2 * n` for each such prime. 2. Between `sqrt (2 * n)` and `2 * n / 3`, which contribute at most `4^(2 * n / 3)` in total. 3. Between `2 * n / 3` and `n`, which do not exist. 4. Between `n` and `2 * n`, which would not exist in the case where Bertrand's postulate is false. 5. Above `2 * n`, which do not exist. -/ theorem centralBinom_le_of_no_bertrand_prime (n : β„•) (n_big : 2 < n) (no_prime : Β¬βˆƒ p : β„•, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n) : centralBinom n ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := by have n_pos : 0 < n := (Nat.zero_le _).trans_lt n_big have n2_pos : 1 ≀ 2 * n := mul_pos (zero_lt_two' β„•) n_pos let S := (Finset.range (2 * n / 3 + 1)).filter Nat.Prime let f x := x ^ n.centralBinom.factorization x have : ∏ x : β„• in S, f x = ∏ x : β„• in Finset.range (2 * n / 3 + 1), f x := by refine' Finset.prod_filter_of_ne fun p _ h => _ contrapose! h; dsimp only rw [factorization_eq_zero_of_non_prime n.centralBinom h, _root_.pow_zero] rw [centralBinom_factorization_small n n_big no_prime, ← this, ← Finset.prod_filter_mul_prod_filter_not S (Β· ≀ sqrt (2 * n))] apply mul_le_mul' Β· refine' (Finset.prod_le_prod' fun p _ => (_ : f p ≀ 2 * n)).trans _ Β· exact pow_factorization_choose_le (mul_pos two_pos n_pos) have : (Finset.Icc 1 (sqrt (2 * n))).card = sqrt (2 * n) := by rw [card_Icc, Nat.add_sub_cancel] rw [Finset.prod_const] refine' pow_le_pow_right n2_pos ((Finset.card_le_of_subset fun x hx => _).trans this.le) obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hx exact Finset.mem_Icc.mpr ⟨(Finset.mem_filter.1 h1).2.one_lt.le, h2⟩ Β· refine' le_trans _ (primorial_le_4_pow (2 * n / 3)) refine' (Finset.prod_le_prod' fun p hp => (_ : f p ≀ p)).trans _ Β· obtain ⟨h1, h2⟩ := Finset.mem_filter.1 hp refine' (pow_le_pow_right (Finset.mem_filter.1 h1).2.one_lt.le _).trans (pow_one p).le exact Nat.factorization_choose_le_one (sqrt_lt'.mp <| not_le.1 h2) refine' Finset.prod_le_prod_of_subset_of_one_le' (Finset.filter_subset _ _) _ exact fun p hp _ => (Finset.mem_filter.1 hp).2.one_lt.le #align central_binom_le_of_no_bertrand_prime centralBinom_le_of_no_bertrand_prime namespace Nat /-- Proves that **Bertrand's postulate** holds for all sufficiently large `n`. -/ theorem exists_prime_lt_and_le_two_mul_eventually (n : β„•) (n_big : 512 ≀ n) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by -- Assume there is no prime in the range. by_contra no_prime -- Then we have the above sub-exponential bound on the size of this central binomial coefficient. -- We now couple this bound with an exponential lower bound on the central binomial coefficient, -- yielding an inequality which we have seen is false for large enough n. have H1 : n * (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) ≀ 4 ^ n := bertrand_main_inequality n_big have H2 : 4 ^ n < n * n.centralBinom := Nat.four_pow_lt_mul_centralBinom n (le_trans (by norm_num1) n_big) have H3 : n.centralBinom ≀ (2 * n) ^ sqrt (2 * n) * 4 ^ (2 * n / 3) := centralBinom_le_of_no_bertrand_prime n (lt_of_lt_of_le (by norm_num1) n_big) no_prime rw [mul_assoc] at H1; exact not_le.2 H2 ((mul_le_mul_left' H3 n).trans H1) #align nat.exists_prime_lt_and_le_two_mul_eventually Nat.exists_prime_lt_and_le_two_mul_eventually /-- Proves that Bertrand's postulate holds over all positive naturals less than n by identifying a descending list of primes, each no more than twice the next, such that the list contains a witness for each number ≀ n. -/ theorem exists_prime_lt_and_le_two_mul_succ {n} (q) {p : β„•} (prime_p : Nat.Prime p) (covering : p ≀ 2 * q) (H : n < q β†’ βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n) (hn : n < p) : βˆƒ p : β„•, p.Prime ∧ n < p ∧ p ≀ 2 * n := by by_cases h : p ≀ 2 * n; Β· exact ⟨p, prime_p, hn, h⟩ exact H (lt_of_mul_lt_mul_left' (lt_of_lt_of_le (not_le.1 h) covering)) #align nat.exists_prime_lt_and_le_two_mul_succ Nat.exists_prime_lt_and_le_two_mul_succ /-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in run_tac do for i in [317, 163, 83, 43, 23, 13, 7, 5, 3, 2] do let i : Term := quote i evalTactic <| ← `(tactic| refine' exists_prime_lt_and_le_two_mul_succ $i (by norm_num1) (by norm_num1) _)
exact fun h2 => ⟨2, prime_two, h2, Nat.mul_le_mul_left 2 (Nat.pos_of_ne_zero hn0)⟩
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n := by -- Split into cases whether `n` is large or small cases' lt_or_le 511 n with h h -- If `n` is large, apply the lemma derived from the inequalities on the central binomial -- coefficient. Β· exact exists_prime_lt_and_le_two_mul_eventually n h replace h : n < 521 := h.trans_lt (by norm_num1) revert h -- For small `n`, supply a list of primes to cover the initial cases. open Lean Elab Tactic in run_tac do for i in [317, 163, 83, 43, 23, 13, 7, 5, 3, 2] do let i : Term := quote i evalTactic <| ← `(tactic| refine' exists_prime_lt_and_le_two_mul_succ $i (by norm_num1) (by norm_num1) _)
Mathlib.NumberTheory.Bertrand.223_0.gJXoOT9Ce2wC0xc
/-- **Bertrand's Postulate**: For any positive natural number, there is a prime which is greater than it, but no more than twice as large. -/ theorem exists_prime_lt_and_le_two_mul (n : β„•) (hn0 : n β‰  0) : βˆƒ p, Nat.Prime p ∧ n < p ∧ p ≀ 2 * n
Mathlib_NumberTheory_Bertrand
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M i j : β„• ⊒ I ^ i β€’ N F j ≀ N F (i + j)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by
induction' i with _ ih
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by
Mathlib.RingTheory.Filtration.64_0.wQ6WBws0g3n9213
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j)
Mathlib_RingTheory_Filtration
case zero R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M j : β„• ⊒ I ^ Nat.zero β€’ N F j ≀ N F (Nat.zero + j)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β·
simp
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β·
Mathlib.RingTheory.Filtration.64_0.wQ6WBws0g3n9213
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j)
Mathlib_RingTheory_Filtration
case succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M j n✝ : β„• ih : I ^ n✝ β€’ N F j ≀ N F (n✝ + j) ⊒ I ^ Nat.succ n✝ β€’ N F j ≀ N F (Nat.succ n✝ + j)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β·
rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β·
Mathlib.RingTheory.Filtration.64_0.wQ6WBws0g3n9213
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j)
Mathlib_RingTheory_Filtration
case succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M j n✝ : β„• ih : I ^ n✝ β€’ N F j ≀ N F (n✝ + j) ⊒ I β€’ I ^ n✝ β€’ N F j ≀ N F (n✝ + j + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
exact (Submodule.smul_mono_right ih).trans (F.smul_le _)
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc]
Mathlib.RingTheory.Filtration.64_0.wQ6WBws0g3n9213
theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M i j k : β„• ⊒ I ^ (i + k) β€’ N F j ≀ I ^ k β€’ N F (i + j)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by
rw [add_comm, pow_add, mul_smul]
theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by
Mathlib.RingTheory.Filtration.71_0.wQ6WBws0g3n9213
theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M i j k : β„• ⊒ I ^ k β€’ I ^ i β€’ N F j ≀ I ^ k β€’ N F (i + j)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul]
exact Submodule.smul_mono_right (F.pow_smul_le i j)
theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul]
Mathlib.RingTheory.Filtration.71_0.wQ6WBws0g3n9213
theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ sSup (N '' S) (i + 1) ≀ sSup (N '' S) i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by
apply sSup_le_sSup_of_forall_exists_le _
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ βˆ€ x ∈ Set.range fun f => ↑f (i + 1), βˆƒ y ∈ Set.range fun f => ↑f i, x ≀ y
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
case intro.mk.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F✝ F' : Filtration I M S : Set (Filtration I M) i : β„• F : Filtration I M hF : F ∈ S ⊒ βˆƒ y ∈ Set.range fun f => ↑f i, (fun f => ↑f (i + 1)) { val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) } ≀ y
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ I β€’ sSup (N '' S) i ≀ sSup (N '' S) (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by
rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ ⨆ i_1, I β€’ ↑i_1 i ≀ ⨆ i_1, ↑i_1 (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
apply iSup_mono _
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply]
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ βˆ€ (i_1 : ↑(N '' S)), I β€’ ↑i_1 i ≀ ↑i_1 (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _
rintro ⟨_, F, hF, rfl⟩
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
case mk.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F✝ F' : Filtration I M S : Set (Filtration I M) i : β„• F : Filtration I M hF : F ∈ S ⊒ I β€’ ↑{ val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) } i ≀ ↑{ val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) } (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩
Mathlib.RingTheory.Filtration.94_0.wQ6WBws0g3n9213
/-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ sInf (N '' S) (i + 1) ≀ sInf (N '' S) i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by
apply sInf_le_sInf_of_forall_exists_le _
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ βˆ€ x ∈ Set.range fun f => ↑f i, βˆƒ y ∈ Set.range fun f => ↑f (i + 1), y ≀ x
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _
rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
case intro.mk.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F✝ F' : Filtration I M S : Set (Filtration I M) i : β„• F : Filtration I M hF : F ∈ S ⊒ βˆƒ y ∈ Set.range fun f => ↑f (i + 1), y ≀ (fun f => ↑f i) { val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) }
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ I β€’ sInf (N '' S) i ≀ sInf (N '' S) (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by
rw [sInf_eq_iInf', iInf_apply, iInf_apply]
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ I β€’ β¨… i_1, ↑i_1 i ≀ β¨… i_1, ↑i_1 (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply]
refine' Submodule.smul_iInf_le.trans _
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply]
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ β¨… i_1, I β€’ ↑i_1 i ≀ β¨… i_1, ↑i_1 (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _
apply iInf_mono _
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M S : Set (Filtration I M) i : β„• ⊒ βˆ€ (i_1 : ↑(N '' S)), I β€’ ↑i_1 i ≀ ↑i_1 (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _
rintro ⟨_, F, hF, rfl⟩
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
case mk.intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F✝ F' : Filtration I M S : Set (Filtration I M) i : β„• F : Filtration I M hF : F ∈ S ⊒ I β€’ ↑{ val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) } i ≀ ↑{ val := F.N, property := (_ : βˆƒ a ∈ S, a.N = F.N) } (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩
exact F.smul_le i
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩
Mathlib.RingTheory.Filtration.114_0.wQ6WBws0g3n9213
/-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M)
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M i : β„• ⊒ (fun i => I ^ i β€’ N) (i + 1) ≀ (fun i => I ^ i β€’ N) i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by
dsimp only
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by
Mathlib.RingTheory.Filtration.195_0.wQ6WBws0g3n9213
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M i : β„• ⊒ I ^ (i + 1) β€’ N ≀ I ^ i β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only;
rw [add_comm, pow_add, mul_smul]
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only;
Mathlib.RingTheory.Filtration.195_0.wQ6WBws0g3n9213
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M i : β„• ⊒ I ^ 1 β€’ I ^ i β€’ N ≀ I ^ i β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul];
exact Submodule.smul_le_right
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul];
Mathlib.RingTheory.Filtration.195_0.wQ6WBws0g3n9213
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M i : β„• ⊒ I β€’ (fun i => I ^ i β€’ N) i ≀ (fun i => I ^ i β€’ N) (i + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by
dsimp only
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by
Mathlib.RingTheory.Filtration.195_0.wQ6WBws0g3n9213
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M i : β„• ⊒ I β€’ I ^ i β€’ N ≀ I ^ (i + 1) β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only;
rw [add_comm, pow_add, mul_smul, pow_one]
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only;
Mathlib.RingTheory.Filtration.195_0.wQ6WBws0g3n9213
/-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M ⊒ Stable (stableFiltration I N)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by
use 0
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by
Mathlib.RingTheory.Filtration.203_0.wQ6WBws0g3n9213
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M ⊒ βˆ€ n β‰₯ 0, I β€’ Ideal.Filtration.N (stableFiltration I N) n = Ideal.Filtration.N (stableFiltration I N) (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0
intro n _
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0
Mathlib.RingTheory.Filtration.203_0.wQ6WBws0g3n9213
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M n : β„• a✝ : n β‰₯ 0 ⊒ I β€’ Ideal.Filtration.N (stableFiltration I N) n = Ideal.Filtration.N (stableFiltration I N) (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _
dsimp
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _
Mathlib.RingTheory.Filtration.203_0.wQ6WBws0g3n9213
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I✝ : Ideal R F F' : Filtration I✝ M I : Ideal R N : Submodule R M n : β„• a✝ : n β‰₯ 0 ⊒ I β€’ I ^ n β€’ N = I ^ (n + 1) β€’ N
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp
rw [add_comm, pow_add, mul_smul, pow_one]
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp
Mathlib.RingTheory.Filtration.203_0.wQ6WBws0g3n9213
theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊒ βˆƒ nβ‚€, βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by
obtain ⟨nβ‚€, hn⟩ := h
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ βˆƒ nβ‚€, βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h
use nβ‚€
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€
intro k
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) k : β„• ⊒ N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k
induction' k with _ ih
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h.zero R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ N F (nβ‚€ + Nat.zero) = I ^ Nat.zero β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β·
simp
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β·
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h.succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n✝ : β„• ih : N F (nβ‚€ + n✝) = I ^ n✝ β€’ N F nβ‚€ ⊒ N F (nβ‚€ + Nat.succ n✝) = I ^ Nat.succ n✝ β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β·
rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β·
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h.succ.a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M nβ‚€ : β„• hn : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n✝ : β„• ih : N F (nβ‚€ + n✝) = I ^ n✝ β€’ N F nβ‚€ ⊒ nβ‚€ + n✝ β‰₯ nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
linarith
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one]
Mathlib.RingTheory.Filtration.213_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊒ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by
obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by
Mathlib.RingTheory.Filtration.223_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F nβ‚€ : β„• hnβ‚€ : βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€ ⊒ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq
use nβ‚€
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq
Mathlib.RingTheory.Filtration.223_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F nβ‚€ : β„• hnβ‚€ : βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€ ⊒ βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€
intro n hn
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€
Mathlib.RingTheory.Filtration.223_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F nβ‚€ : β„• hnβ‚€ : βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€ n : β„• hn : n β‰₯ nβ‚€ ⊒ N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn
convert hnβ‚€ (n - nβ‚€)
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn
Mathlib.RingTheory.Filtration.223_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
case h.e'_2.h.e'_8 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F nβ‚€ : β„• hnβ‚€ : βˆ€ (k : β„•), N F (nβ‚€ + k) = I ^ k β€’ N F nβ‚€ n : β„• hn : n β‰₯ nβ‚€ ⊒ n = nβ‚€ + (n - nβ‚€)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€)
rw [add_comm, tsub_add_cancel_of_le hn]
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€)
Mathlib.RingTheory.Filtration.223_0.wQ6WBws0g3n9213
theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F ⊒ Stable F ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by
refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by
Mathlib.RingTheory.Filtration.231_0.wQ6WBws0g3n9213
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ : Stable F h : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€ n : β„• hn : n β‰₯ Exists.choose h ⊒ I β€’ N F n = N F (n + 1)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn]
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩
Mathlib.RingTheory.Filtration.231_0.wQ6WBws0g3n9213
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ : Stable F h : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, N F n = I ^ (n - nβ‚€) β€’ N F nβ‚€ n : β„• hn : n β‰₯ Exists.choose h ⊒ n + 1 β‰₯ Exists.choose h
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by
linarith
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by
Mathlib.RingTheory.Filtration.231_0.wQ6WBws0g3n9213
theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F e : N F 0 ≀ N F' 0 ⊒ βˆƒ nβ‚€, βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by
obtain ⟨nβ‚€, hF⟩ := h
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ βˆƒ nβ‚€, βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h
use nβ‚€
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€
intro n
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n : β„• ⊒ N F (n + nβ‚€) ≀ N F' n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n
induction' n with n hn
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h.zero R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ N F (Nat.zero + nβ‚€) ≀ N F' Nat.zero
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β·
refine' (F.antitone _).trans e
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β·
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h.zero R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) ⊒ 0 ≀ Nat.zero + nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e;
simp
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e;
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h.succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n : β„• hn : N F (n + nβ‚€) ≀ N F' n ⊒ N F (Nat.succ n + nβ‚€) ≀ N F' (Nat.succ n)
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β·
rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β·
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h.succ R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n : β„• hn : N F (n + nβ‚€) ≀ N F' n ⊒ I β€’ N F (n + nβ‚€) ≀ N F' (n + 1) case h.succ.a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n : β„• hn : N F (n + nβ‚€) ≀ N F' n ⊒ n + nβ‚€ β‰₯ nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF]
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
case h.succ.a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F e : N F 0 ≀ N F' 0 nβ‚€ : β„• hF : βˆ€ n β‰₯ nβ‚€, I β€’ N F n = N F (n + 1) n : β„• hn : N F (n + nβ‚€) ≀ N F' n ⊒ n + nβ‚€ β‰₯ nβ‚€
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
simp
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _)
Mathlib.RingTheory.Filtration.238_0.wQ6WBws0g3n9213
theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 ⊒ βˆƒ nβ‚€, βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n ∧ N F' (n + nβ‚€) ≀ N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by
obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e)
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n ⊒ βˆƒ nβ‚€, βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n ∧ N F' (n + nβ‚€) ≀ N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e)
obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm)
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e)
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case intro.intro R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n nβ‚‚ : β„• hβ‚‚ : βˆ€ (n : β„•), N F' (n + nβ‚‚) ≀ N F n ⊒ βˆƒ nβ‚€, βˆ€ (n : β„•), N F (n + nβ‚€) ≀ N F' n ∧ N F' (n + nβ‚€) ≀ N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm)
use max n₁ nβ‚‚
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm)
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n nβ‚‚ : β„• hβ‚‚ : βˆ€ (n : β„•), N F' (n + nβ‚‚) ≀ N F n ⊒ βˆ€ (n : β„•), N F (n + max n₁ nβ‚‚) ≀ N F' n ∧ N F' (n + max n₁ nβ‚‚) ≀ N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚
intro n
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case h R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n nβ‚‚ : β„• hβ‚‚ : βˆ€ (n : β„•), N F' (n + nβ‚‚) ≀ N F n n : β„• ⊒ N F (n + max n₁ nβ‚‚) ≀ N F' n ∧ N F' (n + max n₁ nβ‚‚) ≀ N F n
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n
refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case h.refine'_1 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n nβ‚‚ : β„• hβ‚‚ : βˆ€ (n : β„•), N F' (n + nβ‚‚) ≀ N F n n : β„• ⊒ n + n₁ ≀ n + max n₁ nβ‚‚
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;>
simp
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;>
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
case h.refine'_2 R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h✝ h : Stable F h' : Stable F' e : N F 0 = N F' 0 n₁ : β„• h₁ : βˆ€ (n : β„•), N F (n + n₁) ≀ N F' n nβ‚‚ : β„• hβ‚‚ : βˆ€ (n : β„•), N F' (n + nβ‚‚) ≀ N F n n : β„• ⊒ n + nβ‚‚ ≀ n + max n₁ nβ‚‚
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;>
simp
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;>
Mathlib.RingTheory.Filtration.250_0.wQ6WBws0g3n9213
theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : β†₯(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | βˆ€ (i : β„•), f i ∈ N F i}, add_mem' := (_ : βˆ€ {a b : PolynomialModule R M}, a ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ b ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ βˆ€ (i : β„•), a i + b i ∈ N F i) }, zero_mem' := (_ : βˆ€ (i : β„•), 0 ∈ N F i) }.toAddSubsemigroup.carrier i : β„• ⊒ (r β€’ f) i ∈ N F i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by
rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration
R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : β†₯(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | βˆ€ (i : β„•), f i ∈ N F i}, add_mem' := (_ : βˆ€ {a b : PolynomialModule R M}, a ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ b ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ βˆ€ (i : β„•), a i + b i ∈ N F i) }, zero_mem' := (_ : βˆ€ (i : β„•), 0 ∈ N F i) }.toAddSubsemigroup.carrier i : β„• ⊒ βˆ‘ x in Finset.antidiagonal i, coeff (↑r) x.1 β€’ f x.2 ∈ N F i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
apply Submodule.sum_mem
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply]
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration
case a R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : β†₯(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | βˆ€ (i : β„•), f i ∈ N F i}, add_mem' := (_ : βˆ€ {a b : PolynomialModule R M}, a ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ b ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ βˆ€ (i : β„•), a i + b i ∈ N F i) }, zero_mem' := (_ : βˆ€ (i : β„•), 0 ∈ N F i) }.toAddSubsemigroup.carrier i : β„• ⊒ βˆ€ c ∈ Finset.antidiagonal i, coeff (↑r) c.1 β€’ f c.2 ∈ N F i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem
rintro ⟨j, k⟩ e
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration
case a.mk R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : β†₯(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | βˆ€ (i : β„•), f i ∈ N F i}, add_mem' := (_ : βˆ€ {a b : PolynomialModule R M}, a ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ b ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ βˆ€ (i : β„•), a i + b i ∈ N F i) }, zero_mem' := (_ : βˆ€ (i : β„•), 0 ∈ N F i) }.toAddSubsemigroup.carrier i j k : β„• e : (j, k) ∈ Finset.antidiagonal i ⊒ coeff ↑r (j, k).1 β€’ f (j, k).2 ∈ N F i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e
rw [Finset.mem_antidiagonal] at e
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration
case a.mk R M : Type u inst✝² : CommRing R inst✝¹ : AddCommGroup M inst✝ : Module R M I : Ideal R F F' : Filtration I M h : Stable F r : β†₯(reesAlgebra I) f : PolynomialModule R M hf : f ∈ { toAddSubsemigroup := { carrier := {f | βˆ€ (i : β„•), f i ∈ N F i}, add_mem' := (_ : βˆ€ {a b : PolynomialModule R M}, a ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ b ∈ {f | βˆ€ (i : β„•), f i ∈ N F i} β†’ βˆ€ (i : β„•), a i + b i ∈ N F i) }, zero_mem' := (_ : βˆ€ (i : β„•), 0 ∈ N F i) }.toAddSubsemigroup.carrier i j k : β„• e : (j, k).1 + (j, k).2 = i ⊒ coeff ↑r (j, k).1 β€’ f (j, k).2 ∈ N F i
/- Copyright (c) 2022 Andrew Yang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Andrew Yang -/ import Mathlib.RingTheory.Ideal.LocalRing import Mathlib.RingTheory.Noetherian import Mathlib.RingTheory.ReesAlgebra import Mathlib.RingTheory.Finiteness import Mathlib.Data.Polynomial.Module import Mathlib.Order.Hom.Lattice #align_import ring_theory.filtration from "leanprover-community/mathlib"@"70fd9563a21e7b963887c9360bd29b2393e6225a" /-! # `I`-filtrations of modules This file contains the definitions and basic results around (stable) `I`-filtrations of modules. ## Main results - `Ideal.Filtration`: An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ N ≀ I (i + 1)`. Note that we do not require the filtration to start from `⊀`. - `Ideal.Filtration.Stable`: An `I`-filtration is stable if `I β€’ (N i) = N (i + 1)` for large enough `i`. - `Ideal.Filtration.submodule`: The associated module `⨁ Nα΅’` of a filtration, implemented as a submodule of `M[X]`. - `Ideal.Filtration.submodule_fg_iff_stable`: If `F.N i` are all finitely generated, then `F.Stable` iff `F.submodule.FG`. - `Ideal.Filtration.Stable.of_le`: In a finite module over a noetherian ring, if `F' ≀ F`, then `F.Stable β†’ F'.Stable`. - `Ideal.exists_pow_inf_eq_pow_smul`: **Artin-Rees lemma**. given `N ≀ M`, there exists a `k` such that `IⁿM βŠ“ N = Iⁿ⁻ᡏ(IᡏM βŠ“ N)` for all `n β‰₯ k`. - `Ideal.iInf_pow_eq_bot_of_localRing`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian local rings. - `Ideal.iInf_pow_eq_bot_of_isDomain`: **Krull's intersection theorem** (`β¨… i, I ^ i = βŠ₯`) for noetherian domains. -/ universe u v variable {R M : Type u} [CommRing R] [AddCommGroup M] [Module R M] (I : Ideal R) open Polynomial open scoped Polynomial BigOperators /-- An `I`-filtration on the module `M` is a sequence of decreasing submodules `N i` such that `I β€’ (N i) ≀ N (i + 1)`. Note that we do not require the filtration to start from `⊀`. -/ @[ext] structure Ideal.Filtration (M : Type u) [AddCommGroup M] [Module R M] where N : β„• β†’ Submodule R M mono : βˆ€ i, N (i + 1) ≀ N i smul_le : βˆ€ i, I β€’ N i ≀ N (i + 1) #align ideal.filtration Ideal.Filtration variable (F F' : I.Filtration M) {I} namespace Ideal.Filtration theorem pow_smul_le (i j : β„•) : I ^ i β€’ F.N j ≀ F.N (i + j) := by induction' i with _ ih Β· simp Β· rw [pow_succ, mul_smul, Nat.succ_eq_add_one, add_assoc, add_comm 1, ← add_assoc] exact (Submodule.smul_mono_right ih).trans (F.smul_le _) #align ideal.filtration.pow_smul_le Ideal.Filtration.pow_smul_le theorem pow_smul_le_pow_smul (i j k : β„•) : I ^ (i + k) β€’ F.N j ≀ I ^ k β€’ F.N (i + j) := by rw [add_comm, pow_add, mul_smul] exact Submodule.smul_mono_right (F.pow_smul_le i j) #align ideal.filtration.pow_smul_le_pow_smul Ideal.Filtration.pow_smul_le_pow_smul protected theorem antitone : Antitone F.N := antitone_nat_of_succ_le F.mono #align ideal.filtration.antitone Ideal.Filtration.antitone /-- The trivial `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.trivialFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N _ := N mono _ := le_of_eq rfl smul_le _ := Submodule.smul_le_right #align ideal.trivial_filtration Ideal.trivialFiltration /-- The `sup` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Sup (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ” F'.N, fun i => sup_le_sup (F.mono i) (F'.mono i), fun i => (le_of_eq (Submodule.smul_sup _ _ _)).trans <| sup_le_sup (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sSup` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : SupSet (I.Filtration M) := ⟨fun S => { N := sSup (Ideal.Filtration.N '' S) mono := fun i => by apply sSup_le_sSup_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sSup_eq_iSup', iSup_apply, Submodule.smul_iSup, iSup_apply] apply iSup_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ /-- The `inf` of two `I.Filtration`s is an `I.Filtration`. -/ instance : Inf (I.Filtration M) := ⟨fun F F' => ⟨F.N βŠ“ F'.N, fun i => inf_le_inf (F.mono i) (F'.mono i), fun i => (Submodule.smul_inf_le _ _ _).trans <| inf_le_inf (F.smul_le i) (F'.smul_le i)⟩⟩ /-- The `sInf` of a family of `I.Filtration`s is an `I.Filtration`. -/ instance : InfSet (I.Filtration M) := ⟨fun S => { N := sInf (Ideal.Filtration.N '' S) mono := fun i => by apply sInf_le_sInf_of_forall_exists_le _ rintro _ ⟨⟨_, F, hF, rfl⟩, rfl⟩ exact ⟨_, ⟨⟨_, F, hF, rfl⟩, rfl⟩, F.mono i⟩ smul_le := fun i => by rw [sInf_eq_iInf', iInf_apply, iInf_apply] refine' Submodule.smul_iInf_le.trans _ apply iInf_mono _ rintro ⟨_, F, hF, rfl⟩ exact F.smul_le i }⟩ instance : Top (I.Filtration M) := ⟨I.trivialFiltration ⊀⟩ instance : Bot (I.Filtration M) := ⟨I.trivialFiltration βŠ₯⟩ @[simp] theorem sup_N : (F βŠ” F').N = F.N βŠ” F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.sup_N Ideal.Filtration.sup_N @[simp] theorem sSup_N (S : Set (I.Filtration M)) : (sSup S).N = sSup (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Sup_N Ideal.Filtration.sSup_N @[simp] theorem inf_N : (F βŠ“ F').N = F.N βŠ“ F'.N := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.inf_N Ideal.Filtration.inf_N @[simp] theorem sInf_N (S : Set (I.Filtration M)) : (sInf S).N = sInf (Ideal.Filtration.N '' S) := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.Inf_N Ideal.Filtration.sInf_N @[simp] theorem top_N : (⊀ : I.Filtration M).N = ⊀ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.top_N Ideal.Filtration.top_N @[simp] theorem bot_N : (βŠ₯ : I.Filtration M).N = βŠ₯ := rfl set_option linter.uppercaseLean3 false in #align ideal.filtration.bot_N Ideal.Filtration.bot_N @[simp] theorem iSup_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iSup f).N = ⨆ i, (f i).N := congr_arg sSup (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.supr_N Ideal.Filtration.iSup_N @[simp] theorem iInf_N {ΞΉ : Sort*} (f : ΞΉ β†’ I.Filtration M) : (iInf f).N = β¨… i, (f i).N := congr_arg sInf (Set.range_comp _ _).symm set_option linter.uppercaseLean3 false in #align ideal.filtration.infi_N Ideal.Filtration.iInf_N instance : CompleteLattice (I.Filtration M) := Function.Injective.completeLattice Ideal.Filtration.N Ideal.Filtration.ext sup_N inf_N (fun _ => sSup_image) (fun _ => sInf_image) top_N bot_N instance : Inhabited (I.Filtration M) := ⟨βŠ₯⟩ /-- An `I` filtration is stable if `I β€’ F.N n = F.N (n+1)` for large enough `n`. -/ def Stable : Prop := βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, I β€’ F.N n = F.N (n + 1) #align ideal.filtration.stable Ideal.Filtration.Stable /-- The trivial stable `I`-filtration of `N`. -/ @[simps] def _root_.Ideal.stableFiltration (I : Ideal R) (N : Submodule R M) : I.Filtration M where N i := I ^ i β€’ N mono i := by dsimp only; rw [add_comm, pow_add, mul_smul]; exact Submodule.smul_le_right smul_le i := by dsimp only; rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration Ideal.stableFiltration theorem _root_.Ideal.stableFiltration_stable (I : Ideal R) (N : Submodule R M) : (I.stableFiltration N).Stable := by use 0 intro n _ dsimp rw [add_comm, pow_add, mul_smul, pow_one] #align ideal.stable_filtration_stable Ideal.stableFiltration_stable variable {F F'} (h : F.Stable) theorem Stable.exists_pow_smul_eq : βˆƒ nβ‚€, βˆ€ k, F.N (nβ‚€ + k) = I ^ k β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hn⟩ := h use nβ‚€ intro k induction' k with _ ih Β· simp Β· rw [Nat.succ_eq_add_one, ← add_assoc, ← hn, ih, add_comm, pow_add, mul_smul, pow_one] linarith #align ideal.filtration.stable.exists_pow_smul_eq Ideal.Filtration.Stable.exists_pow_smul_eq theorem Stable.exists_pow_smul_eq_of_ge : βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by obtain ⟨nβ‚€, hnβ‚€βŸ© := h.exists_pow_smul_eq use nβ‚€ intro n hn convert hnβ‚€ (n - nβ‚€) rw [add_comm, tsub_add_cancel_of_le hn] #align ideal.filtration.stable.exists_pow_smul_eq_of_ge Ideal.Filtration.Stable.exists_pow_smul_eq_of_ge theorem stable_iff_exists_pow_smul_eq_of_ge : F.Stable ↔ βˆƒ nβ‚€, βˆ€ n β‰₯ nβ‚€, F.N n = I ^ (n - nβ‚€) β€’ F.N nβ‚€ := by refine' ⟨Stable.exists_pow_smul_eq_of_ge, fun h => ⟨h.choose, fun n hn => _⟩⟩ rw [h.choose_spec n hn, h.choose_spec (n + 1) (by linarith), smul_smul, ← pow_succ, tsub_add_eq_add_tsub hn] #align ideal.filtration.stable_iff_exists_pow_smul_eq_of_ge Ideal.Filtration.stable_iff_exists_pow_smul_eq_of_ge theorem Stable.exists_forall_le (h : F.Stable) (e : F.N 0 ≀ F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n := by obtain ⟨nβ‚€, hF⟩ := h use nβ‚€ intro n induction' n with n hn Β· refine' (F.antitone _).trans e; simp Β· rw [Nat.succ_eq_one_add, add_assoc, add_comm, add_comm 1 n, ← hF] exact (Submodule.smul_mono_right hn).trans (F'.smul_le _) simp #align ideal.filtration.stable.exists_forall_le Ideal.Filtration.Stable.exists_forall_le theorem Stable.bounded_difference (h : F.Stable) (h' : F'.Stable) (e : F.N 0 = F'.N 0) : βˆƒ nβ‚€, βˆ€ n, F.N (n + nβ‚€) ≀ F'.N n ∧ F'.N (n + nβ‚€) ≀ F.N n := by obtain ⟨n₁, hβ‚βŸ© := h.exists_forall_le (le_of_eq e) obtain ⟨nβ‚‚, hβ‚‚βŸ© := h'.exists_forall_le (le_of_eq e.symm) use max n₁ nβ‚‚ intro n refine' ⟨(F.antitone _).trans (h₁ n), (F'.antitone _).trans (hβ‚‚ n)⟩ <;> simp #align ideal.filtration.stable.bounded_difference Ideal.Filtration.Stable.bounded_difference open PolynomialModule variable (F F') /-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e
subst e
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier := { f | βˆ€ i, f i ∈ F.N i } add_mem' hf hg i := Submodule.add_mem _ (hf i) (hg i) zero_mem' i := Submodule.zero_mem _ smul_mem' r f hf i := by rw [Subalgebra.smul_def, PolynomialModule.smul_apply] apply Submodule.sum_mem rintro ⟨j, k⟩ e rw [Finset.mem_antidiagonal] at e
Mathlib.RingTheory.Filtration.263_0.wQ6WBws0g3n9213
/-- The `R[IX]`-submodule of `M[X]` associated with an `I`-filtration. -/ protected def submodule : Submodule (reesAlgebra I) (PolynomialModule R M) where carrier
Mathlib_RingTheory_Filtration