|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Command-line interface to inspect and execute a graph in a SavedModel. |
|
|
|
For detailed usages and examples, please refer to: |
|
https://www.tensorflow.org/guide/saved_model#cli_to_inspect_and_execute_savedmodel |
|
|
|
""" |
|
|
|
import argparse |
|
import ast |
|
import os |
|
import re |
|
import sys |
|
|
|
from absl import app |
|
import numpy as np |
|
import six |
|
|
|
from tensorflow.core.example import example_pb2 |
|
from tensorflow.core.framework import types_pb2 |
|
from tensorflow.core.protobuf import config_pb2 |
|
from tensorflow.python.client import session |
|
from tensorflow.python.debug.wrappers import local_cli_wrapper |
|
from tensorflow.python.eager import def_function |
|
from tensorflow.python.eager import function as defun |
|
from tensorflow.python.framework import meta_graph as meta_graph_lib |
|
from tensorflow.python.framework import ops as ops_lib |
|
from tensorflow.python.framework import tensor_spec |
|
from tensorflow.python.lib.io import file_io |
|
from tensorflow.python.platform import tf_logging as logging |
|
from tensorflow.python.saved_model import load |
|
from tensorflow.python.saved_model import loader |
|
from tensorflow.python.saved_model import save |
|
from tensorflow.python.saved_model import signature_constants |
|
from tensorflow.python.tools import saved_model_aot_compile |
|
from tensorflow.python.tools import saved_model_utils |
|
from tensorflow.python.tpu import tpu |
|
from tensorflow.python.util.compat import collections_abc |
|
|
|
|
|
_XLA_DEBUG_OPTIONS_URL = ( |
|
'https://github.com/tensorflow/tensorflow/blob/master/' |
|
'tensorflow/compiler/xla/debug_options_flags.cc') |
|
|
|
|
|
|
|
_OP_DENYLIST = set(['WriteFile', 'ReadFile', 'PrintV2']) |
|
|
|
|
|
def _show_tag_sets(saved_model_dir): |
|
"""Prints the tag-sets stored in SavedModel directory. |
|
|
|
Prints all the tag-sets for MetaGraphs stored in SavedModel directory. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect. |
|
""" |
|
tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir) |
|
print('The given SavedModel contains the following tag-sets:') |
|
for tag_set in sorted(tag_sets): |
|
print('%r' % ', '.join(sorted(tag_set))) |
|
|
|
|
|
def _show_signature_def_map_keys(saved_model_dir, tag_set): |
|
"""Prints the keys for each SignatureDef in the SignatureDef map. |
|
|
|
Prints the list of SignatureDef keys from the SignatureDef map specified by |
|
the given tag-set and SavedModel directory. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect. |
|
tag_set: Group of tag(s) of the MetaGraphDef to get SignatureDef map from, |
|
in string format, separated by ','. For tag-set contains multiple tags, |
|
all tags must be passed in. |
|
""" |
|
signature_def_map = get_signature_def_map(saved_model_dir, tag_set) |
|
print('The given SavedModel MetaGraphDef contains SignatureDefs with the ' |
|
'following keys:') |
|
for signature_def_key in sorted(signature_def_map.keys()): |
|
print('SignatureDef key: \"%s\"' % signature_def_key) |
|
|
|
|
|
def _get_inputs_tensor_info_from_meta_graph_def(meta_graph_def, |
|
signature_def_key): |
|
"""Gets TensorInfo for all inputs of the SignatureDef. |
|
|
|
Returns a dictionary that maps each input key to its TensorInfo for the given |
|
signature_def_key in the meta_graph_def |
|
|
|
Args: |
|
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDef map to |
|
look up SignatureDef key. |
|
signature_def_key: A SignatureDef key string. |
|
|
|
Returns: |
|
A dictionary that maps input tensor keys to TensorInfos. |
|
|
|
Raises: |
|
ValueError if `signature_def_key` is not found in the MetaGraphDef. |
|
""" |
|
if signature_def_key not in meta_graph_def.signature_def: |
|
raise ValueError( |
|
f'Could not find signature "{signature_def_key}". Please choose from: ' |
|
f'{", ".join(meta_graph_def.signature_def.keys())}') |
|
return meta_graph_def.signature_def[signature_def_key].inputs |
|
|
|
|
|
def _get_outputs_tensor_info_from_meta_graph_def(meta_graph_def, |
|
signature_def_key): |
|
"""Gets TensorInfos for all outputs of the SignatureDef. |
|
|
|
Returns a dictionary that maps each output key to its TensorInfo for the given |
|
signature_def_key in the meta_graph_def. |
|
|
|
Args: |
|
meta_graph_def: MetaGraphDef protocol buffer with the SignatureDefmap to |
|
look up signature_def_key. |
|
signature_def_key: A SignatureDef key string. |
|
|
|
Returns: |
|
A dictionary that maps output tensor keys to TensorInfos. |
|
""" |
|
return meta_graph_def.signature_def[signature_def_key].outputs |
|
|
|
|
|
def _show_inputs_outputs(saved_model_dir, tag_set, signature_def_key, indent=0): |
|
"""Prints input and output TensorInfos. |
|
|
|
Prints the details of input and output TensorInfos for the SignatureDef mapped |
|
by the given signature_def_key. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect. |
|
tag_set: Group of tag(s) of the MetaGraphDef, in string format, separated by |
|
','. For tag-set contains multiple tags, all tags must be passed in. |
|
signature_def_key: A SignatureDef key string. |
|
indent: How far (in increments of 2 spaces) to indent each line of output. |
|
""" |
|
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir, |
|
tag_set) |
|
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def( |
|
meta_graph_def, signature_def_key) |
|
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def( |
|
meta_graph_def, signature_def_key) |
|
|
|
indent_str = ' ' * indent |
|
def in_print(s): |
|
print(indent_str + s) |
|
|
|
in_print('The given SavedModel SignatureDef contains the following input(s):') |
|
for input_key, input_tensor in sorted(inputs_tensor_info.items()): |
|
in_print(' inputs[\'%s\'] tensor_info:' % input_key) |
|
_print_tensor_info(input_tensor, indent+1) |
|
|
|
in_print('The given SavedModel SignatureDef contains the following ' |
|
'output(s):') |
|
for output_key, output_tensor in sorted(outputs_tensor_info.items()): |
|
in_print(' outputs[\'%s\'] tensor_info:' % output_key) |
|
_print_tensor_info(output_tensor, indent+1) |
|
|
|
in_print('Method name is: %s' % |
|
meta_graph_def.signature_def[signature_def_key].method_name) |
|
|
|
|
|
def _show_defined_functions(saved_model_dir): |
|
"""Prints the callable concrete and polymorphic functions of the Saved Model. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect. |
|
""" |
|
meta_graphs = saved_model_utils.read_saved_model(saved_model_dir).meta_graphs |
|
has_object_graph_def = False |
|
|
|
for meta_graph_def in meta_graphs: |
|
has_object_graph_def |= meta_graph_def.HasField('object_graph_def') |
|
if not has_object_graph_def: |
|
return |
|
with ops_lib.Graph().as_default(): |
|
trackable_object = load.load(saved_model_dir) |
|
|
|
print('\nConcrete Functions:', end='') |
|
children = list( |
|
save._AugmentedGraphView(trackable_object) |
|
.list_children(trackable_object)) |
|
children = sorted(children, key=lambda x: x.name) |
|
for name, child in children: |
|
concrete_functions = [] |
|
if isinstance(child, defun.ConcreteFunction): |
|
concrete_functions.append(child) |
|
elif isinstance(child, def_function.Function): |
|
concrete_functions.extend( |
|
child._list_all_concrete_functions_for_serialization()) |
|
else: |
|
continue |
|
print('\n Function Name: \'%s\'' % name) |
|
concrete_functions = sorted(concrete_functions, key=lambda x: x.name) |
|
for index, concrete_function in enumerate(concrete_functions, 1): |
|
args, kwargs = None, None |
|
if concrete_function.structured_input_signature: |
|
args, kwargs = concrete_function.structured_input_signature |
|
elif concrete_function._arg_keywords: |
|
|
|
|
|
args = concrete_function._arg_keywords |
|
if args: |
|
print(' Option #%d' % index) |
|
print(' Callable with:') |
|
_print_args(args, indent=4) |
|
if kwargs: |
|
_print_args(kwargs, 'Named Argument', indent=4) |
|
|
|
|
|
def _print_args(arguments, argument_type='Argument', indent=0): |
|
"""Formats and prints the argument of the concrete functions defined in the model. |
|
|
|
Args: |
|
arguments: Arguments to format print. |
|
argument_type: Type of arguments. |
|
indent: How far (in increments of 2 spaces) to indent each line of |
|
output. |
|
""" |
|
indent_str = ' ' * indent |
|
|
|
def _maybe_add_quotes(value): |
|
is_quotes = '\'' * isinstance(value, str) |
|
return is_quotes + str(value) + is_quotes |
|
|
|
def in_print(s, end='\n'): |
|
print(indent_str + s, end=end) |
|
|
|
for index, element in enumerate(arguments, 1): |
|
if indent == 4: |
|
in_print('%s #%d' % (argument_type, index)) |
|
if isinstance(element, six.string_types): |
|
in_print(' %s' % element) |
|
elif isinstance(element, tensor_spec.TensorSpec): |
|
print((indent + 1) * ' ' + '%s: %s' % (element.name, repr(element))) |
|
elif (isinstance(element, collections_abc.Iterable) and |
|
not isinstance(element, dict)): |
|
in_print(' DType: %s' % type(element).__name__) |
|
in_print(' Value: [', end='') |
|
for value in element: |
|
print('%s' % _maybe_add_quotes(value), end=', ') |
|
print('\b\b]') |
|
elif isinstance(element, dict): |
|
in_print(' DType: %s' % type(element).__name__) |
|
in_print(' Value: {', end='') |
|
for (key, value) in element.items(): |
|
print('\'%s\': %s' % (str(key), _maybe_add_quotes(value)), end=', ') |
|
print('\b\b}') |
|
else: |
|
in_print(' DType: %s' % type(element).__name__) |
|
in_print(' Value: %s' % str(element)) |
|
|
|
|
|
def _print_tensor_info(tensor_info, indent=0): |
|
"""Prints details of the given tensor_info. |
|
|
|
Args: |
|
tensor_info: TensorInfo object to be printed. |
|
indent: How far (in increments of 2 spaces) to indent each line output |
|
""" |
|
indent_str = ' ' * indent |
|
def in_print(s): |
|
print(indent_str + s) |
|
|
|
in_print(' dtype: ' + |
|
{value: key |
|
for (key, value) in types_pb2.DataType.items()}[tensor_info.dtype]) |
|
|
|
if tensor_info.tensor_shape.unknown_rank: |
|
shape = 'unknown_rank' |
|
else: |
|
dims = [str(dim.size) for dim in tensor_info.tensor_shape.dim] |
|
shape = ', '.join(dims) |
|
shape = '(' + shape + ')' |
|
in_print(' shape: ' + shape) |
|
in_print(' name: ' + tensor_info.name) |
|
|
|
|
|
def _show_all(saved_model_dir): |
|
"""Prints tag-set, SignatureDef and Inputs/Outputs information in SavedModel. |
|
|
|
Prints all tag-set, SignatureDef and Inputs/Outputs information stored in |
|
SavedModel directory. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect. |
|
""" |
|
tag_sets = saved_model_utils.get_saved_model_tag_sets(saved_model_dir) |
|
for tag_set in sorted(tag_sets): |
|
print("\nMetaGraphDef with tag-set: '%s' " |
|
"contains the following SignatureDefs:" % ', '.join(tag_set)) |
|
|
|
tag_set = ','.join(tag_set) |
|
signature_def_map = get_signature_def_map(saved_model_dir, tag_set) |
|
for signature_def_key in sorted(signature_def_map.keys()): |
|
print('\nsignature_def[\'' + signature_def_key + '\']:') |
|
_show_inputs_outputs(saved_model_dir, tag_set, signature_def_key, |
|
indent=1) |
|
_show_defined_functions(saved_model_dir) |
|
|
|
|
|
def get_meta_graph_def(saved_model_dir, tag_set): |
|
"""DEPRECATED: Use saved_model_utils.get_meta_graph_def instead. |
|
|
|
Gets MetaGraphDef from SavedModel. Returns the MetaGraphDef for the given |
|
tag-set and SavedModel directory. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect or execute. |
|
tag_set: Group of tag(s) of the MetaGraphDef to load, in string format, |
|
separated by ','. For tag-set contains multiple tags, all tags must be |
|
passed in. |
|
|
|
Raises: |
|
RuntimeError: An error when the given tag-set does not exist in the |
|
SavedModel. |
|
|
|
Returns: |
|
A MetaGraphDef corresponding to the tag-set. |
|
""" |
|
return saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set) |
|
|
|
|
|
def get_signature_def_map(saved_model_dir, tag_set): |
|
"""Gets SignatureDef map from a MetaGraphDef in a SavedModel. |
|
|
|
Returns the SignatureDef map for the given tag-set in the SavedModel |
|
directory. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to inspect or execute. |
|
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in |
|
string format, separated by ','. For tag-set contains multiple tags, all |
|
tags must be passed in. |
|
|
|
Returns: |
|
A SignatureDef map that maps from string keys to SignatureDefs. |
|
""" |
|
meta_graph = saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set) |
|
return meta_graph.signature_def |
|
|
|
|
|
def scan_meta_graph_def(meta_graph_def): |
|
"""Scans meta_graph_def and reports if there are ops on denylist. |
|
|
|
Print ops if they are on black list, or print success if no denylisted ops |
|
found. |
|
|
|
Args: |
|
meta_graph_def: MetaGraphDef protocol buffer. |
|
""" |
|
all_ops_set = set( |
|
meta_graph_lib.ops_used_by_graph_def(meta_graph_def.graph_def)) |
|
denylisted_ops = _OP_DENYLIST & all_ops_set |
|
if denylisted_ops: |
|
|
|
print( |
|
'MetaGraph with tag set %s contains the following denylisted ops:' % |
|
meta_graph_def.meta_info_def.tags, denylisted_ops) |
|
else: |
|
print('MetaGraph with tag set %s does not contain denylisted ops.' % |
|
meta_graph_def.meta_info_def.tags) |
|
|
|
|
|
def run_saved_model_with_feed_dict(saved_model_dir, |
|
tag_set, |
|
signature_def_key, |
|
input_tensor_key_feed_dict, |
|
outdir, |
|
overwrite_flag, |
|
worker=None, |
|
init_tpu=False, |
|
use_tfrt=False, |
|
tf_debug=False): |
|
"""Runs SavedModel and fetch all outputs. |
|
|
|
Runs the input dictionary through the MetaGraphDef within a SavedModel |
|
specified by the given tag_set and SignatureDef. Also save the outputs to file |
|
if outdir is not None. |
|
|
|
Args: |
|
saved_model_dir: Directory containing the SavedModel to execute. |
|
tag_set: Group of tag(s) of the MetaGraphDef with the SignatureDef map, in |
|
string format, separated by ','. For tag-set contains multiple tags, all |
|
tags must be passed in. |
|
signature_def_key: A SignatureDef key string. |
|
input_tensor_key_feed_dict: A dictionary maps input keys to numpy ndarrays. |
|
outdir: A directory to save the outputs to. If the directory doesn't exist, |
|
it will be created. |
|
overwrite_flag: A boolean flag to allow overwrite output file if file with |
|
the same name exists. |
|
worker: If provided, the session will be run on the worker. Valid worker |
|
specification is a bns or gRPC path. |
|
init_tpu: If true, the TPU system will be initialized after the session |
|
is created. |
|
use_tfrt: If true, TFRT session will be used. |
|
tf_debug: A boolean flag to use TensorFlow Debugger (TFDBG) to observe the |
|
intermediate Tensor values and runtime GraphDefs while running the |
|
SavedModel. |
|
|
|
Raises: |
|
ValueError: When any of the input tensor keys is not valid. |
|
RuntimeError: An error when output file already exists and overwrite is not |
|
enabled. |
|
""" |
|
|
|
meta_graph_def = saved_model_utils.get_meta_graph_def(saved_model_dir, |
|
tag_set) |
|
|
|
|
|
|
|
inputs_tensor_info = _get_inputs_tensor_info_from_meta_graph_def( |
|
meta_graph_def, signature_def_key) |
|
|
|
|
|
for input_key_name in input_tensor_key_feed_dict.keys(): |
|
if input_key_name not in inputs_tensor_info: |
|
raise ValueError( |
|
'"%s" is not a valid input key. Please choose from %s, or use ' |
|
'--show option.' % |
|
(input_key_name, '"' + '", "'.join(inputs_tensor_info.keys()) + '"')) |
|
|
|
inputs_feed_dict = { |
|
inputs_tensor_info[key].name: tensor |
|
for key, tensor in input_tensor_key_feed_dict.items() |
|
} |
|
|
|
outputs_tensor_info = _get_outputs_tensor_info_from_meta_graph_def( |
|
meta_graph_def, signature_def_key) |
|
|
|
output_tensor_keys_sorted = sorted(outputs_tensor_info.keys()) |
|
output_tensor_names_sorted = [ |
|
outputs_tensor_info[tensor_key].name |
|
for tensor_key in output_tensor_keys_sorted |
|
] |
|
|
|
config = None |
|
if use_tfrt: |
|
logging.info('Using TFRT session.') |
|
config = config_pb2.ConfigProto( |
|
experimental=config_pb2.ConfigProto.Experimental(use_tfrt=True)) |
|
with session.Session(worker, graph=ops_lib.Graph(), config=config) as sess: |
|
if init_tpu: |
|
print('Initializing TPU System ...') |
|
|
|
|
|
sess.run(tpu.initialize_system()) |
|
|
|
loader.load(sess, tag_set.split(','), saved_model_dir) |
|
|
|
if tf_debug: |
|
sess = local_cli_wrapper.LocalCLIDebugWrapperSession(sess) |
|
|
|
outputs = sess.run(output_tensor_names_sorted, feed_dict=inputs_feed_dict) |
|
|
|
for i, output in enumerate(outputs): |
|
output_tensor_key = output_tensor_keys_sorted[i] |
|
print('Result for output key %s:\n%s' % (output_tensor_key, output)) |
|
|
|
|
|
if outdir: |
|
|
|
if not os.path.isdir(outdir): |
|
os.makedirs(outdir) |
|
output_full_path = os.path.join(outdir, output_tensor_key + '.npy') |
|
|
|
|
|
if not overwrite_flag and os.path.exists(output_full_path): |
|
raise RuntimeError( |
|
'Output file %s already exists. Add \"--overwrite\" to overwrite' |
|
' the existing output files.' % output_full_path) |
|
|
|
np.save(output_full_path, output) |
|
print('Output %s is saved to %s' % (output_tensor_key, |
|
output_full_path)) |
|
|
|
|
|
def preprocess_inputs_arg_string(inputs_str): |
|
"""Parses input arg into dictionary that maps input to file/variable tuple. |
|
|
|
Parses input string in the format of, for example, |
|
"input1=filename1[variable_name1],input2=filename2" into a |
|
dictionary looks like |
|
{'input_key1': (filename1, variable_name1), |
|
'input_key2': (file2, None)} |
|
, which maps input keys to a tuple of file name and variable name(None if |
|
empty). |
|
|
|
Args: |
|
inputs_str: A string that specified where to load inputs. Inputs are |
|
separated by semicolons. |
|
* For each input key: |
|
'<input_key>=<filename>' or |
|
'<input_key>=<filename>[<variable_name>]' |
|
* The optional 'variable_name' key will be set to None if not specified. |
|
|
|
Returns: |
|
A dictionary that maps input keys to a tuple of file name and variable name. |
|
|
|
Raises: |
|
RuntimeError: An error when the given input string is in a bad format. |
|
""" |
|
input_dict = {} |
|
inputs_raw = inputs_str.split(';') |
|
for input_raw in filter(bool, inputs_raw): |
|
|
|
match = re.match(r'([^=]+)=([^\[\]]+)\[([^\[\]]+)\]$', input_raw) |
|
|
|
if match: |
|
input_dict[match.group(1)] = match.group(2), match.group(3) |
|
else: |
|
|
|
match = re.match(r'([^=]+)=([^\[\]]+)$', input_raw) |
|
if match: |
|
input_dict[match.group(1)] = match.group(2), None |
|
else: |
|
raise RuntimeError( |
|
'--inputs "%s" format is incorrect. Please follow' |
|
'"<input_key>=<filename>", or' |
|
'"<input_key>=<filename>[<variable_name>]"' % input_raw) |
|
|
|
return input_dict |
|
|
|
|
|
def preprocess_input_exprs_arg_string(input_exprs_str, safe=True): |
|
"""Parses input arg into dictionary that maps input key to python expression. |
|
|
|
Parses input string in the format of 'input_key=<python expression>' into a |
|
dictionary that maps each input_key to its python expression. |
|
|
|
Args: |
|
input_exprs_str: A string that specifies python expression for input keys. |
|
Each input is separated by semicolon. For each input key: |
|
'input_key=<python expression>' |
|
safe: Whether to evaluate the python expression as literals or allow |
|
arbitrary calls (e.g. numpy usage). |
|
|
|
Returns: |
|
A dictionary that maps input keys to their values. |
|
|
|
Raises: |
|
RuntimeError: An error when the given input string is in a bad format. |
|
""" |
|
input_dict = {} |
|
|
|
for input_raw in filter(bool, input_exprs_str.split(';')): |
|
if '=' not in input_exprs_str: |
|
raise RuntimeError('--input_exprs "%s" format is incorrect. Please follow' |
|
'"<input_key>=<python expression>"' % input_exprs_str) |
|
input_key, expr = input_raw.split('=', 1) |
|
if safe: |
|
try: |
|
input_dict[input_key] = ast.literal_eval(expr) |
|
except: |
|
raise RuntimeError( |
|
f'Expression "{expr}" is not a valid python literal.') |
|
else: |
|
|
|
input_dict[input_key] = eval(expr) |
|
return input_dict |
|
|
|
|
|
def preprocess_input_examples_arg_string(input_examples_str): |
|
"""Parses input into dict that maps input keys to lists of tf.Example. |
|
|
|
Parses input string in the format of 'input_key1=[{feature_name: |
|
feature_list}];input_key2=[{feature_name:feature_list}];' into a dictionary |
|
that maps each input_key to its list of serialized tf.Example. |
|
|
|
Args: |
|
input_examples_str: A string that specifies a list of dictionaries of |
|
feature_names and their feature_lists for each input. |
|
Each input is separated by semicolon. For each input key: |
|
'input=[{feature_name1: feature_list1, feature_name2:feature_list2}]' |
|
items in feature_list can be the type of float, int, long or str. |
|
|
|
Returns: |
|
A dictionary that maps input keys to lists of serialized tf.Example. |
|
|
|
Raises: |
|
ValueError: An error when the given tf.Example is not a list. |
|
""" |
|
input_dict = preprocess_input_exprs_arg_string(input_examples_str) |
|
for input_key, example_list in input_dict.items(): |
|
if not isinstance(example_list, list): |
|
raise ValueError( |
|
'tf.Example input must be a list of dictionaries, but "%s" is %s' % |
|
(example_list, type(example_list))) |
|
input_dict[input_key] = [ |
|
_create_example_string(example) for example in example_list |
|
] |
|
return input_dict |
|
|
|
|
|
def _create_example_string(example_dict): |
|
"""Create a serialized tf.example from feature dictionary.""" |
|
example = example_pb2.Example() |
|
for feature_name, feature_list in example_dict.items(): |
|
if not isinstance(feature_list, list): |
|
raise ValueError('feature value must be a list, but %s: "%s" is %s' % |
|
(feature_name, feature_list, type(feature_list))) |
|
if isinstance(feature_list[0], float): |
|
example.features.feature[feature_name].float_list.value.extend( |
|
feature_list) |
|
elif isinstance(feature_list[0], str): |
|
example.features.feature[feature_name].bytes_list.value.extend( |
|
[f.encode('utf8') for f in feature_list]) |
|
elif isinstance(feature_list[0], bytes): |
|
example.features.feature[feature_name].bytes_list.value.extend( |
|
feature_list) |
|
elif isinstance(feature_list[0], six.integer_types): |
|
example.features.feature[feature_name].int64_list.value.extend( |
|
feature_list) |
|
else: |
|
raise ValueError( |
|
'Type %s for value %s is not supported for tf.train.Feature.' % |
|
(type(feature_list[0]), feature_list[0])) |
|
return example.SerializeToString() |
|
|
|
|
|
def load_inputs_from_input_arg_string(inputs_str, input_exprs_str, |
|
input_examples_str): |
|
"""Parses input arg strings and create inputs feed_dict. |
|
|
|
Parses '--inputs' string for inputs to be loaded from file, and parses |
|
'--input_exprs' string for inputs to be evaluated from python expression. |
|
'--input_examples' string for inputs to be created from tf.example feature |
|
dictionary list. |
|
|
|
Args: |
|
inputs_str: A string that specified where to load inputs. Each input is |
|
separated by semicolon. |
|
* For each input key: |
|
'<input_key>=<filename>' or |
|
'<input_key>=<filename>[<variable_name>]' |
|
* The optional 'variable_name' key will be set to None if not specified. |
|
* File specified by 'filename' will be loaded using numpy.load. Inputs |
|
can be loaded from only .npy, .npz or pickle files. |
|
* The "[variable_name]" key is optional depending on the input file type |
|
as descripted in more details below. |
|
When loading from a npy file, which always contains a numpy ndarray, the |
|
content will be directly assigned to the specified input tensor. If a |
|
variable_name is specified, it will be ignored and a warning will be |
|
issued. |
|
When loading from a npz zip file, user can specify which variable within |
|
the zip file to load for the input tensor inside the square brackets. If |
|
nothing is specified, this function will check that only one file is |
|
included in the zip and load it for the specified input tensor. |
|
When loading from a pickle file, if no variable_name is specified in the |
|
square brackets, whatever that is inside the pickle file will be passed |
|
to the specified input tensor, else SavedModel CLI will assume a |
|
dictionary is stored in the pickle file and the value corresponding to |
|
the variable_name will be used. |
|
input_exprs_str: A string that specifies python expressions for inputs. |
|
* In the format of: '<input_key>=<python expression>'. |
|
* numpy module is available as np. |
|
input_examples_str: A string that specifies tf.Example with dictionary. |
|
* In the format of: '<input_key>=<[{feature:value list}]>' |
|
|
|
Returns: |
|
A dictionary that maps input tensor keys to numpy ndarrays. |
|
|
|
Raises: |
|
RuntimeError: An error when a key is specified, but the input file contains |
|
multiple numpy ndarrays, none of which matches the given key. |
|
RuntimeError: An error when no key is specified, but the input file contains |
|
more than one numpy ndarrays. |
|
""" |
|
tensor_key_feed_dict = {} |
|
|
|
inputs = preprocess_inputs_arg_string(inputs_str) |
|
|
|
|
|
|
|
input_exprs = preprocess_input_exprs_arg_string(input_exprs_str) |
|
input_examples = preprocess_input_examples_arg_string(input_examples_str) |
|
|
|
for input_tensor_key, (filename, variable_name) in inputs.items(): |
|
data = np.load(file_io.FileIO(filename, mode='rb'), allow_pickle=True) |
|
|
|
|
|
if variable_name: |
|
|
|
if isinstance(data, np.ndarray): |
|
logging.warn( |
|
'Input file %s contains a single ndarray. Name key \"%s\" ignored.' |
|
% (filename, variable_name)) |
|
tensor_key_feed_dict[input_tensor_key] = data |
|
else: |
|
if variable_name in data: |
|
tensor_key_feed_dict[input_tensor_key] = data[variable_name] |
|
else: |
|
raise RuntimeError( |
|
'Input file %s does not contain variable with name \"%s\".' % |
|
(filename, variable_name)) |
|
|
|
else: |
|
|
|
if isinstance(data, np.lib.npyio.NpzFile): |
|
variable_name_list = data.files |
|
if len(variable_name_list) != 1: |
|
raise RuntimeError( |
|
'Input file %s contains more than one ndarrays. Please specify ' |
|
'the name of ndarray to use.' % filename) |
|
tensor_key_feed_dict[input_tensor_key] = data[variable_name_list[0]] |
|
else: |
|
tensor_key_feed_dict[input_tensor_key] = data |
|
|
|
|
|
for input_tensor_key, py_expr_evaluated in input_exprs.items(): |
|
if input_tensor_key in tensor_key_feed_dict: |
|
logging.warn( |
|
'input_key %s has been specified with both --inputs and --input_exprs' |
|
' options. Value in --input_exprs will be used.' % input_tensor_key) |
|
tensor_key_feed_dict[input_tensor_key] = py_expr_evaluated |
|
|
|
|
|
for input_tensor_key, example in input_examples.items(): |
|
if input_tensor_key in tensor_key_feed_dict: |
|
logging.warn( |
|
'input_key %s has been specified in multiple options. Value in ' |
|
'--input_examples will be used.' % input_tensor_key) |
|
tensor_key_feed_dict[input_tensor_key] = example |
|
return tensor_key_feed_dict |
|
|
|
|
|
def show(args): |
|
"""Function triggered by show command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
""" |
|
|
|
if args.all: |
|
_show_all(args.dir) |
|
else: |
|
|
|
|
|
|
|
if args.tag_set is None: |
|
_show_tag_sets(args.dir) |
|
else: |
|
if args.signature_def is None: |
|
_show_signature_def_map_keys(args.dir, args.tag_set) |
|
else: |
|
_show_inputs_outputs(args.dir, args.tag_set, args.signature_def) |
|
|
|
|
|
def run(args): |
|
"""Function triggered by run command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
|
|
Raises: |
|
AttributeError: An error when neither --inputs nor --input_exprs is passed |
|
to run command. |
|
""" |
|
if not args.inputs and not args.input_exprs and not args.input_examples: |
|
raise AttributeError( |
|
'At least one of --inputs, --input_exprs or --input_examples must be ' |
|
'required') |
|
tensor_key_feed_dict = load_inputs_from_input_arg_string( |
|
args.inputs, args.input_exprs, args.input_examples) |
|
run_saved_model_with_feed_dict( |
|
args.dir, |
|
args.tag_set, |
|
args.signature_def, |
|
tensor_key_feed_dict, |
|
args.outdir, |
|
args.overwrite, |
|
worker=args.worker, |
|
init_tpu=args.init_tpu, |
|
use_tfrt=args.use_tfrt, |
|
tf_debug=args.tf_debug) |
|
|
|
|
|
def scan(args): |
|
"""Function triggered by scan command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
""" |
|
if args.tag_set: |
|
scan_meta_graph_def( |
|
saved_model_utils.get_meta_graph_def(args.dir, args.tag_set)) |
|
else: |
|
saved_model = saved_model_utils.read_saved_model(args.dir) |
|
for meta_graph_def in saved_model.meta_graphs: |
|
scan_meta_graph_def(meta_graph_def) |
|
|
|
|
|
def convert_with_tensorrt(args): |
|
"""Function triggered by 'convert tensorrt' command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
""" |
|
|
|
|
|
from tensorflow.python.compiler.tensorrt import trt_convert as trt |
|
|
|
if not args.convert_tf1_model: |
|
params = trt.DEFAULT_TRT_CONVERSION_PARAMS._replace( |
|
max_workspace_size_bytes=args.max_workspace_size_bytes, |
|
precision_mode=args.precision_mode, |
|
minimum_segment_size=args.minimum_segment_size) |
|
converter = trt.TrtGraphConverterV2( |
|
input_saved_model_dir=args.dir, |
|
input_saved_model_tags=args.tag_set.split(','), |
|
**params._asdict()) |
|
try: |
|
converter.convert() |
|
except Exception as e: |
|
raise RuntimeError( |
|
'{}. Try passing "--convert_tf1_model=True".'.format(e)) |
|
converter.save(output_saved_model_dir=args.output_dir) |
|
else: |
|
trt.create_inference_graph( |
|
None, |
|
None, |
|
max_batch_size=1, |
|
max_workspace_size_bytes=args.max_workspace_size_bytes, |
|
precision_mode=args.precision_mode, |
|
minimum_segment_size=args.minimum_segment_size, |
|
is_dynamic_op=True, |
|
input_saved_model_dir=args.dir, |
|
input_saved_model_tags=args.tag_set.split(','), |
|
output_saved_model_dir=args.output_dir) |
|
|
|
|
|
def freeze_model(args): |
|
"""Function triggered by freeze_model command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
""" |
|
checkpoint_path = ( |
|
args.checkpoint_path |
|
or os.path.join(args.dir, 'variables/variables')) |
|
if not args.variables_to_feed: |
|
variables_to_feed = [] |
|
elif args.variables_to_feed.lower() == 'all': |
|
variables_to_feed = None |
|
else: |
|
variables_to_feed = args.variables_to_feed.split(',') |
|
|
|
saved_model_aot_compile.freeze_model( |
|
checkpoint_path=checkpoint_path, |
|
meta_graph_def=saved_model_utils.get_meta_graph_def( |
|
args.dir, args.tag_set), |
|
signature_def_key=args.signature_def_key, |
|
variables_to_feed=variables_to_feed, |
|
output_prefix=args.output_prefix) |
|
|
|
|
|
def aot_compile_cpu(args): |
|
"""Function triggered by aot_compile_cpu command. |
|
|
|
Args: |
|
args: A namespace parsed from command line. |
|
""" |
|
checkpoint_path = ( |
|
args.checkpoint_path |
|
or os.path.join(args.dir, 'variables/variables')) |
|
if not args.variables_to_feed: |
|
variables_to_feed = [] |
|
elif args.variables_to_feed.lower() == 'all': |
|
variables_to_feed = None |
|
else: |
|
variables_to_feed = args.variables_to_feed.split(',') |
|
|
|
saved_model_aot_compile.aot_compile_cpu_meta_graph_def( |
|
checkpoint_path=checkpoint_path, |
|
meta_graph_def=saved_model_utils.get_meta_graph_def( |
|
args.dir, args.tag_set), |
|
signature_def_key=args.signature_def_key, |
|
variables_to_feed=variables_to_feed, |
|
output_prefix=args.output_prefix, |
|
target_triple=args.target_triple, |
|
target_cpu=args.target_cpu, |
|
cpp_class=args.cpp_class, |
|
multithreading=args.multithreading.lower() not in ('f', 'false', '0')) |
|
|
|
|
|
def add_show_subparser(subparsers): |
|
"""Add parser for `show`.""" |
|
show_msg = ( |
|
'Usage examples:\n' |
|
'To show all tag-sets in a SavedModel:\n' |
|
'$saved_model_cli show --dir /tmp/saved_model\n\n' |
|
'To show all available SignatureDef keys in a ' |
|
'MetaGraphDef specified by its tag-set:\n' |
|
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve\n\n' |
|
'For a MetaGraphDef with multiple tags in the tag-set, all tags must be ' |
|
'passed in, separated by \';\':\n' |
|
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve,gpu\n\n' |
|
'To show all inputs and outputs TensorInfo for a specific' |
|
' SignatureDef specified by the SignatureDef key in a' |
|
' MetaGraph.\n' |
|
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve' |
|
' --signature_def serving_default\n\n' |
|
'To show all available information in the SavedModel:\n' |
|
'$saved_model_cli show --dir /tmp/saved_model --all') |
|
parser_show = subparsers.add_parser( |
|
'show', |
|
description=show_msg, |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
parser_show.add_argument( |
|
'--dir', |
|
type=str, |
|
required=True, |
|
help='directory containing the SavedModel to inspect') |
|
parser_show.add_argument( |
|
'--all', |
|
action='store_true', |
|
help='if set, will output all information in given SavedModel') |
|
parser_show.add_argument( |
|
'--tag_set', |
|
type=str, |
|
default=None, |
|
help='tag-set of graph in SavedModel to show, separated by \',\'') |
|
parser_show.add_argument( |
|
'--signature_def', |
|
type=str, |
|
default=None, |
|
metavar='SIGNATURE_DEF_KEY', |
|
help='key of SignatureDef to display input(s) and output(s) for') |
|
parser_show.set_defaults(func=show) |
|
|
|
|
|
def add_run_subparser(subparsers): |
|
"""Add parser for `run`.""" |
|
run_msg = ('Usage example:\n' |
|
'To run input tensors from files through a MetaGraphDef and save' |
|
' the output tensors to files:\n' |
|
'$saved_model_cli show --dir /tmp/saved_model --tag_set serve \\\n' |
|
' --signature_def serving_default \\\n' |
|
' --inputs input1_key=/tmp/124.npz[x],input2_key=/tmp/123.npy ' |
|
'\\\n' |
|
' --input_exprs \'input3_key=np.ones(2)\' \\\n' |
|
' --input_examples ' |
|
'\'input4_key=[{"id":[26],"weights":[0.5, 0.5]}]\' \\\n' |
|
' --outdir=/out\n\n' |
|
'For more information about input file format, please see:\n' |
|
'https://www.tensorflow.org/guide/saved_model_cli\n') |
|
parser_run = subparsers.add_parser( |
|
'run', description=run_msg, formatter_class=argparse.RawTextHelpFormatter) |
|
parser_run.add_argument( |
|
'--dir', |
|
type=str, |
|
required=True, |
|
help='directory containing the SavedModel to execute') |
|
parser_run.add_argument( |
|
'--tag_set', |
|
type=str, |
|
required=True, |
|
help='tag-set of graph in SavedModel to load, separated by \',\'') |
|
parser_run.add_argument( |
|
'--signature_def', |
|
type=str, |
|
required=True, |
|
metavar='SIGNATURE_DEF_KEY', |
|
help='key of SignatureDef to run') |
|
msg = ('Loading inputs from files, in the format of \'<input_key>=<filename>,' |
|
' or \'<input_key>=<filename>[<variable_name>]\', separated by \';\'.' |
|
' The file format can only be from .npy, .npz or pickle.') |
|
parser_run.add_argument('--inputs', type=str, default='', help=msg) |
|
msg = ('Specifying inputs by python expressions, in the format of' |
|
' "<input_key>=\'<python expression>\'", separated by \';\'. ' |
|
'numpy module is available as \'np\'. Please note that the expression ' |
|
'will be evaluated as-is, and is susceptible to code injection. ' |
|
'When this is set, the value will override duplicate input keys from ' |
|
'--inputs option.') |
|
parser_run.add_argument('--input_exprs', type=str, default='', help=msg) |
|
msg = ( |
|
'Specifying tf.Example inputs as list of dictionaries. For example: ' |
|
'<input_key>=[{feature0:value_list,feature1:value_list}]. Use ";" to ' |
|
'separate input keys. Will override duplicate input keys from --inputs ' |
|
'and --input_exprs option.') |
|
parser_run.add_argument('--input_examples', type=str, default='', help=msg) |
|
parser_run.add_argument( |
|
'--outdir', |
|
type=str, |
|
default=None, |
|
help='if specified, output tensor(s) will be saved to given directory') |
|
parser_run.add_argument( |
|
'--overwrite', |
|
action='store_true', |
|
help='if set, output file will be overwritten if it already exists.') |
|
parser_run.add_argument( |
|
'--tf_debug', |
|
action='store_true', |
|
help='if set, will use TensorFlow Debugger (tfdbg) to watch the ' |
|
'intermediate Tensors and runtime GraphDefs while running the ' |
|
'SavedModel.') |
|
parser_run.add_argument( |
|
'--worker', |
|
type=str, |
|
default=None, |
|
help='if specified, a Session will be run on the worker. ' |
|
'Valid worker specification is a bns or gRPC path.') |
|
parser_run.add_argument( |
|
'--init_tpu', |
|
action='store_true', |
|
default=None, |
|
help='if specified, tpu.initialize_system will be called on the Session. ' |
|
'This option should be only used if the worker is a TPU job.') |
|
parser_run.add_argument( |
|
'--use_tfrt', |
|
action='store_true', |
|
default=None, |
|
help='if specified, TFRT session will be used, instead of TF1 session.') |
|
parser_run.set_defaults(func=run) |
|
|
|
|
|
def add_scan_subparser(subparsers): |
|
"""Add parser for `scan`.""" |
|
scan_msg = ('Usage example:\n' |
|
'To scan for denylisted ops in SavedModel:\n' |
|
'$saved_model_cli scan --dir /tmp/saved_model\n' |
|
'To scan a specific MetaGraph, pass in --tag_set\n') |
|
parser_scan = subparsers.add_parser( |
|
'scan', |
|
description=scan_msg, |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
parser_scan.add_argument( |
|
'--dir', |
|
type=str, |
|
required=True, |
|
help='directory containing the SavedModel to execute') |
|
parser_scan.add_argument( |
|
'--tag_set', |
|
type=str, |
|
help='tag-set of graph in SavedModel to scan, separated by \',\'') |
|
parser_scan.set_defaults(func=scan) |
|
|
|
|
|
def add_convert_subparser(subparsers): |
|
"""Add parser for `convert`.""" |
|
convert_msg = ('Usage example:\n' |
|
'To convert the SavedModel to one that have TensorRT ops:\n' |
|
'$saved_model_cli convert \\\n' |
|
' --dir /tmp/saved_model \\\n' |
|
' --tag_set serve \\\n' |
|
' --output_dir /tmp/saved_model_trt \\\n' |
|
' tensorrt \n') |
|
parser_convert = subparsers.add_parser( |
|
'convert', |
|
description=convert_msg, |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
parser_convert.add_argument( |
|
'--dir', |
|
type=str, |
|
required=True, |
|
help='directory containing the SavedModel to convert') |
|
parser_convert.add_argument( |
|
'--output_dir', |
|
type=str, |
|
required=True, |
|
help='output directory for the converted SavedModel') |
|
parser_convert.add_argument( |
|
'--tag_set', |
|
type=str, |
|
required=True, |
|
help='tag-set of graph in SavedModel to convert, separated by \',\'') |
|
convert_subparsers = parser_convert.add_subparsers( |
|
title='conversion methods', |
|
description='valid conversion methods', |
|
help='the conversion to run with the SavedModel') |
|
parser_convert_with_tensorrt = convert_subparsers.add_parser( |
|
'tensorrt', |
|
description='Convert the SavedModel with Tensorflow-TensorRT integration', |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
parser_convert_with_tensorrt.add_argument( |
|
'--max_workspace_size_bytes', |
|
type=int, |
|
default=2 << 20, |
|
help=('the maximum GPU temporary memory which the TRT engine can use at ' |
|
'execution time')) |
|
parser_convert_with_tensorrt.add_argument( |
|
'--precision_mode', |
|
type=str, |
|
default='FP32', |
|
help='one of FP32, FP16 and INT8') |
|
parser_convert_with_tensorrt.add_argument( |
|
'--minimum_segment_size', |
|
type=int, |
|
default=3, |
|
help=('the minimum number of nodes required for a subgraph to be replaced' |
|
'in a TensorRT node')) |
|
parser_convert_with_tensorrt.add_argument( |
|
'--convert_tf1_model', |
|
type=bool, |
|
default=False, |
|
help='support TRT conversion for TF1 models') |
|
parser_convert_with_tensorrt.set_defaults(func=convert_with_tensorrt) |
|
|
|
|
|
def _parse_common_freeze_and_aot(parser_compile): |
|
"""Parse arguments shared by freeze model and aot_compile.""" |
|
parser_compile.add_argument( |
|
'--dir', |
|
type=str, |
|
required=True, |
|
help='directory containing the SavedModel to convert') |
|
parser_compile.add_argument( |
|
'--output_prefix', |
|
type=str, |
|
required=True, |
|
help=('output directory + filename prefix for the resulting header(s) ' |
|
'and object file(s)')) |
|
parser_compile.add_argument( |
|
'--tag_set', |
|
type=str, |
|
required=True, |
|
help='tag-set of graph in SavedModel to convert, separated by \',\'') |
|
parser_compile.add_argument( |
|
'--signature_def_key', |
|
type=str, |
|
default=signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY, |
|
help=('signature_def key to use. ' |
|
'default: DEFAULT_SERVING_SIGNATURE_DEF_KEY')) |
|
parser_compile.add_argument( |
|
'--checkpoint_path', |
|
type=str, |
|
default=None, |
|
help='Custom checkpoint to use (default: use the SavedModel variables)') |
|
parser_compile.add_argument( |
|
'--variables_to_feed', |
|
type=str, |
|
default='', |
|
help=('The names of variables that will be fed into the network. ' |
|
'Options are: empty (default; all variables are frozen, none may ' |
|
'be fed), \'all\' (all variables may be fed), or a ' |
|
'comma-delimited list of names of variables that may be fed. In ' |
|
'the last case, the non-fed variables will be frozen in the graph.' |
|
'**NOTE** Any variables passed to `variables_to_feed` *must be set ' |
|
'by the user*. These variables will NOT be frozen and their ' |
|
'values will be uninitialized in the compiled object ' |
|
'(this applies to all input arguments from the signature as ' |
|
'well).')) |
|
|
|
|
|
def add_freeze_model_subparser(subparsers): |
|
"""Add parser for `freeze_model`.""" |
|
compile_msg = '\n'.join( |
|
['Usage example:', |
|
'To freeze a SavedModel in preparation for tfcompile:', |
|
'$saved_model_cli freeze_model \\', |
|
' --dir /tmp/saved_model \\', |
|
' --tag_set serve \\', |
|
' --output_prefix /tmp/saved_model_xla_aot', |
|
]) |
|
|
|
parser_compile = subparsers.add_parser( |
|
'freeze_model', |
|
description=compile_msg, |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
_parse_common_freeze_and_aot(parser_compile) |
|
parser_compile.set_defaults(func=freeze_model) |
|
|
|
|
|
def add_aot_compile_cpu_subparser(subparsers): |
|
"""Add parser for `aot_compile_cpu`.""" |
|
compile_msg = '\n'.join( |
|
['Usage example:', |
|
'To compile a SavedModel signature via (CPU) XLA AOT:', |
|
'$saved_model_cli aot_compile_cpu \\', |
|
' --dir /tmp/saved_model \\', |
|
' --tag_set serve \\', |
|
' --output_dir /tmp/saved_model_xla_aot', |
|
'', '', |
|
'Note: Additional XLA compilation options are available by setting the ', |
|
'XLA_FLAGS environment variable. See the XLA debug options flags for ', |
|
'all the options: ', |
|
' {}'.format(_XLA_DEBUG_OPTIONS_URL), |
|
'', |
|
'For example, to disable XLA fast math when compiling:', |
|
'', |
|
'XLA_FLAGS="--xla_cpu_enable_fast_math=false" $saved_model_cli ' |
|
'aot_compile_cpu ...', |
|
'', |
|
'Some possibly useful flags:', |
|
' --xla_cpu_enable_fast_math=false', |
|
' --xla_force_host_platform_device_count=<num threads>', |
|
' (useful in conjunction with disabling multi threading)' |
|
]) |
|
|
|
parser_compile = subparsers.add_parser( |
|
'aot_compile_cpu', |
|
description=compile_msg, |
|
formatter_class=argparse.RawTextHelpFormatter) |
|
_parse_common_freeze_and_aot(parser_compile) |
|
parser_compile.add_argument( |
|
'--target_triple', |
|
type=str, |
|
default='x86_64-pc-linux', |
|
help=('Target triple for LLVM during AOT compilation. Examples: ' |
|
'x86_64-none-darwin, x86_64-apple-ios, arm64-none-ios, ' |
|
'armv7-none-android. More examples are available in tfcompile.bzl ' |
|
'in the tensorflow codebase.')) |
|
parser_compile.add_argument( |
|
'--target_cpu', |
|
type=str, |
|
default='', |
|
help=('Target cpu name for LLVM during AOT compilation. Examples: ' |
|
'x86_64, skylake, haswell, westmere, <empty> (unknown). For ' |
|
'a complete list of options, run (for x86 targets): ' |
|
'`llc -march=x86 -mcpu=help`')) |
|
parser_compile.add_argument( |
|
'--cpp_class', |
|
type=str, |
|
required=True, |
|
help=('The name of the generated C++ class, wrapping the generated ' |
|
'function. The syntax of this flag is ' |
|
'[[<optional_namespace>::],...]<class_name>. This mirrors the ' |
|
'C++ syntax for referring to a class, where multiple namespaces ' |
|
'may precede the class name, separated by double-colons. ' |
|
'The class will be generated in the given namespace(s), or if no ' |
|
'namespaces are given, within the global namespace.')) |
|
parser_compile.add_argument( |
|
'--multithreading', |
|
type=str, |
|
default='False', |
|
help=('Enable multithreading in the compiled computation. ' |
|
'Note that if using this option, the resulting object files ' |
|
'may have external dependencies on multithreading libraries ' |
|
'like nsync.')) |
|
|
|
parser_compile.set_defaults(func=aot_compile_cpu) |
|
|
|
|
|
def create_parser(): |
|
"""Creates a parser that parse the command line arguments. |
|
|
|
Returns: |
|
A namespace parsed from command line arguments. |
|
""" |
|
parser = argparse.ArgumentParser( |
|
description='saved_model_cli: Command-line interface for SavedModel') |
|
parser.add_argument('-v', '--version', action='version', version='0.1.0') |
|
|
|
subparsers = parser.add_subparsers( |
|
title='commands', description='valid commands', help='additional help') |
|
|
|
|
|
add_show_subparser(subparsers) |
|
|
|
|
|
add_run_subparser(subparsers) |
|
|
|
|
|
add_scan_subparser(subparsers) |
|
|
|
|
|
add_convert_subparser(subparsers) |
|
|
|
|
|
add_aot_compile_cpu_subparser(subparsers) |
|
|
|
|
|
add_freeze_model_subparser(subparsers) |
|
return parser |
|
|
|
|
|
def main(): |
|
logging.set_verbosity(logging.INFO) |
|
parser = create_parser() |
|
args = parser.parse_args() |
|
if not hasattr(args, 'func'): |
|
parser.error('too few arguments') |
|
args.func(args) |
|
|
|
|
|
if __name__ == '__main__': |
|
sys.exit(main()) |
|
|