input
stringlengths
236
16.9k
output
stringlengths
19
805
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- Which Asian country gave its agricultural sector the largest share of its gross domestic product?
SELECT T2.Country FROM continent AS T1 INNER JOIN encompasses AS T2 ON T1.Name = T2.Continent INNER JOIN country AS T3 ON T2.Country = T3.Code INNER JOIN economy AS T4 ON T4.Country = T3.Code WHERE T1.Name = 'Asia' ORDER BY T4.Agriculture DESC LIMIT 1;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What form of governance does the least prosperous nation in the world have?
SELECT T3.Government FROM country AS T1 INNER JOIN economy AS T2 ON T1.Code = T2.Country INNER JOIN politics AS T3 ON T3.Country = T2.Country WHERE T2.GDP IS NOT NULL ORDER BY T2.GDP ASC LIMIT 1;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What year saw the greatest number of organizations created on the European continent?
SELECT STRFTIME('%Y', T4.Established) FROM continent AS T1 INNER JOIN encompasses AS T2 ON T1.Name = T2.Continent INNER JOIN country AS T3 ON T2.Country = T3.Code INNER JOIN organization AS T4 ON T4.Country = T3.Code WHERE T1.Name = 'Europe' GROUP BY STRFTIME('%Y', T4.Established) ORDER BY COUNT(T4.Name) DESC LIMIT 1;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What other country does the most populated nation in the world share a border with and how long is the border between the two nations?
SELECT T2.Country2, T2.Length FROM country AS T1 INNER JOIN borders AS T2 ON T1.Code = T2.Country1 INNER JOIN country AS T3 ON T3.Code = T2.Country2 WHERE T1.Name = ( SELECT Name FROM country ORDER BY Population DESC LIMIT 1 );
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What is the population density of the nation whose capital city is in the Distrito Federal province, and what portion of its gross domestic product is devoted to its industries?
SELECT T1.Population / T1.Area, T2.Industry FROM country AS T1 INNER JOIN economy AS T2 ON T1.Code = T2.Country WHERE T1.Province = 'Distrito Federal';
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- Lists all governments with a parliamentary democracy that achieved their independence between 01/01/1950 and 12/31/1999.
SELECT * FROM politics WHERE STRFTIME('%Y', Independence) BETWEEN '1950' AND '1999' AND Government = 'parliamentary democracy';
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What percentage of countries became independent during the year 1960?
SELECT CAST(SUM(CASE WHEN STRFTIME('%Y', Independence) = '1960' THEN 1 ELSE 0 END) AS REAL) * 100 / COUNT(Country) FROM politics;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- List all deserts that are not between latitudes 30 and 40.
SELECT Name FROM desert WHERE Latitude < 30 OR Latitude > 40;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- Indicate the coordinates of all the deserts whose area is in more than one country.
SELECT T1.Latitude, T1.Longitude FROM desert AS T1 INNER JOIN geo_desert AS T2 ON T1.Name = T2.Desert GROUP BY T1.Name, T1.Latitude, T1.Longitude HAVING COUNT(T1.Name) > 1;
-- Database schema | borders : Country1 [ TEXT ] , Country2 [ TEXT ] , Length [ REAL ] | city : Name [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Population [ INTEGER ] , Longitude [ REAL ] , Latitude [ REAL ] | continent : Name [ TEXT ] primary_key , Area [ REAL ] | country : Name [ TEXT ] , Code [ TEXT ] primary_key , Capital [ TEXT ] , Province [ TEXT ] , Area [ REAL ] , Population [ INTEGER ] | desert : Name [ TEXT ] primary_key , Area [ REAL ] , Longitude [ REAL ] , Latitude [ REAL ] | economy : Country [ TEXT ] primary_key , GDP [ REAL ] , Agriculture [ REAL ] , Service [ REAL ] , Industry [ REAL ] , Inflation [ REAL ] | encompasses : Country [ TEXT ] , Continent [ TEXT ] , Percentage [ REAL ] | ethnicGroup : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | geo_desert : Desert [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_estuary : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_island : Island [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_lake : Lake [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_mountain : Mountain [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_river : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_sea : Sea [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | geo_source : River [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] | island : Name [ TEXT ] primary_key , Islands [ TEXT ] , Area [ REAL ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | islandIn : Island [ TEXT ] , Sea [ TEXT ] , Lake [ TEXT ] , River [ TEXT ] | isMember : Country [ TEXT ] , Organization [ TEXT ] , Type [ TEXT ] | lake : Name [ TEXT ] primary_key , Area [ REAL ] , Depth [ REAL ] , Altitude [ REAL ] , Type [ TEXT ] , River [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | language : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | located : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] | locatedOn : City [ TEXT ] , Province [ TEXT ] , Country [ TEXT ] , Island [ TEXT ] | mergesWith : Sea1 [ TEXT ] , Sea2 [ TEXT ] | mountain : Name [ TEXT ] primary_key , Mountains [ TEXT ] , Height [ REAL ] , Type [ TEXT ] , Longitude [ REAL ] , Latitude [ REAL ] | mountainOnIsland : Mountain [ TEXT ] , Island [ TEXT ] | organization : Abbreviation [ TEXT ] primary_key , Name [ TEXT ] , City [ TEXT ] , Country [ TEXT ] , Province [ TEXT ] , Established [ DATE ] | politics : Country [ TEXT ] primary_key , Independence [ DATE ] , Dependent [ TEXT ] , Government [ TEXT ] | population : Country [ TEXT ] primary_key , Population_Growth [ REAL ] , Infant_Mortality [ REAL ] | province : Name [ TEXT ] , Country [ TEXT ] , Population [ INTEGER ] , Area [ REAL ] , Capital [ TEXT ] , CapProv [ TEXT ] | religion : Country [ TEXT ] , Name [ TEXT ] , Percentage [ REAL ] | river : Name [ TEXT ] primary_key , River [ TEXT ] , Lake [ TEXT ] , Sea [ TEXT ] , Length [ REAL ] , SourceLongitude [ REAL ] , SourceLatitude [ REAL ] , Mountains [ TEXT ] , SourceAltitude [ REAL ] , EstuaryLongitude [ REAL ] , EstuaryLatitude [ REAL ] | sea : Name [ TEXT ] primary_key , Depth [ REAL ] | target : Country [ TEXT ] primary_key , Target [ TEXT ] | -- -- What is the provincial capital of the province with a population of less than 80,000 that has the highest average population per area?
SELECT CapProv FROM province WHERE Population < 80000 ORDER BY Population / Area DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many customers have never married?
SELECT COUNT(ID) FROM Customers WHERE MARITAL_STATUS = 'Never-married';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among all the customers, how many of them are teenagers?
SELECT COUNT(ID) FROM Customers WHERE age >= 13 AND age <= 19;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Please list the occupations of the customers with an education level of 11.
SELECT DISTINCT OCCUPATION FROM Customers WHERE EDUCATIONNUM = 11;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of the first 60,000 customers' responses to the incentive mailing sent by the marketing department, how many of them are considered a true response?
SELECT COUNT(REFID) custmoer_number FROM Mailings1_2 WHERE RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the customers over 30, how many of them are Machine-op-inspcts?
SELECT COUNT(ID) FROM Customers WHERE OCCUPATION = 'Machine-op-inspct' AND age > 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many female customers have an education level of over 11?
SELECT COUNT(ID) FROM Customers WHERE EDUCATIONNUM > 11 AND SEX = 'Female';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of the first 60,000 customers who sent a true response to the incentive mailing sent by the marketing department, how many of them are female?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.SEX = 'Female' AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Please list the occupations of the customers over 40 and have sent a true response to the incentive mailing sent by the marketing department.
SELECT DISTINCT T1.OCCUPATION FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.age > 40 AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the male customers, how many of them come from a place with over 30,000 inhabitants?
SELECT COUNT(T1.GEOID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Male' AND T2.INHABITANTS_K > 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many customers are from the place with the highest average income per month?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID ORDER BY T2.INCOME_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the customers from a place with more than 20,000 and less than 30,000 inhabitants, how many of them are Machine-op-inspcts?
SELECT COUNT(T1.GEOID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.OCCUPATION = 'Machine-op-inspct' AND T2.INHABITANTS_K > 20 AND T2.INHABITANTS_K < 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Which customer come from a place with more inhabitants, customer no.0 or customer no.1?
SELECT T1.ID FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.ID = 0 OR T1.ID = 1 ORDER BY INHABITANTS_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of the first 60,000 customers who sent a true response to the incentive mailing sent by the marketing department, how many of them are from a place with more than 30,000 inhabitants?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T3.INHABITANTS_K > 30 AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of the first 60,000 customers who sent a true response to the incentive mailing sent by the marketing department, how many of them are divorced males?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.SEX = 'Male' AND T1.MARITAL_STATUS = 'Divorced' AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many of the first 60,000 customers from the place with the highest average income per month have sent a true response to the incentive mailing sent by the marketing department?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T2.RESPONSE = 'true' ORDER BY T3.INCOME_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the number of inhabitants of the place the most customers are from?
SELECT DISTINCT T2.INHABITANTS_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID ORDER BY T2.INHABITANTS_K DESC;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the customers who come from the place with 25746 inhabitants, how many of them are male?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T2.INHABITANTS_K = 25.746 AND T1.SEX = 'Male';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of the first 60,000 customers who sent a true response to the incentive mailing sent by the marketing department, how many of them are teenagers?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.age >= 13 AND T1.age <= 19 AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the average education level of customers from the place with the highest average income per month?
SELECT AVG(T1.EDUCATIONNUM) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID ORDER BY T2.INCOME_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the average age of first 60,000 customers who sent a true response to the incentive mailing sent by the marketing department?
SELECT AVG(T1.age) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many of the customers are male?
SELECT COUNT(ID) FROM Customers WHERE SEX = 'Male';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the customer's geographic identifier who are handlers or cleaners.
SELECT GEOID FROM Customers WHERE OCCUPATION = 'Handlers-cleaners';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the total number of customers with an age below 30?
SELECT COUNT(ID) FROM Customers WHERE age < 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the geographic identifier with an income that ranges from 2100 to 2500.
SELECT GEOID FROM Demog WHERE INCOME_K >= 2100 AND INCOME_K <= 2500;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In geographic identifier from 20 to 50, how many of them has a number of inhabitants below 20?
SELECT COUNT(GEOID) FROM Demog WHERE INHABITANTS_K < 20 AND GEOID >= 20 AND GEOID <= 50;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the number of inhabitants and income of geographic identifier 239?
SELECT INHABITANTS_K FROM Demog WHERE GEOID = 239;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Give the level of education and occupation of customers ages from 20 to 35 with an income K of 2000 and below.
SELECT T1.EDUCATIONNUM, T1.OCCUPATION FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T2.INCOME_K < 2000 AND T1.age >= 20 AND T1.age <= 35;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the number of inhabitants of customers with a divorced marital status and older than 50 years old.
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.MARITAL_STATUS = 'Divorced' AND T1.age < 50;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the geographic identifier and income of the oldest customer?
SELECT T1.GEOID, T2.INCOME_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID ORDER BY T1.age DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the male customers with an level of education of 4 and below, list their income K.
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 4 AND SEX = 'Male' );
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the occupation and income of male customers with an level of education of 4 to 6.
SELECT T1.OCCUPATION, T2.INCOME_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.EDUCATIONNUM >= 4 AND T1.EDUCATIONNUM <= 6 AND T1.SEX = 'Male';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In widowed male customers ages from 40 to 60, how many of them has an income ranges from 3000 and above?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.age >= 40 AND T1.age <= 60 AND T1.MARITAL_STATUS = 'Widowed' AND T1.SEX = 'Male' AND T2.INCOME_K >= 2000 AND T2.INCOME_K <= 3000;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the occupation of customers within number of inhabitants ranges of 30 to 40?
SELECT DISTINCT T1.OCCUPATION FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T2.INHABITANTS_K >= 30 AND T2.INHABITANTS_K <= 40;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the widowed female customers, give the income of those who has an level of education of 5 and below.
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 5 AND SEX = 'Female' AND MARITAL_STATUS = 'Widowed' );
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the marital status of customers within the age of 40 to 60 that has the highest income among the group.
SELECT T1.MARITAL_STATUS FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.age >= 40 AND T1.age <= 60 ORDER BY T2.INCOME_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the number of inhabitants of male customers ages from 20 to 30 years old who are farming or fishing?
SELECT T2.INHABITANTS_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.OCCUPATION = 'Farming-fishing' AND T1.SEX = 'Male' AND T1.age >= 20 AND T1.age <= 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the customers with a marital status of married-civ-spouse, list the number of inhabitants and age of those who are machine-op-inspct.
SELECT T2.INHABITANTS_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.OCCUPATION = 'Farming-fishing' AND T1.SEX = 'Male' AND T1.age >= 20 AND T1.age <= 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In female customers ages from 50 to 60, how many of them has an number of inhabitants ranges from 19 to 24?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Female' AND T1.age >= 50 AND T1.age <= 60 AND T2.INHABITANTS_K >= 19 AND T2.INHABITANTS_K <= 24;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the income and number of inhabitants of customers with an age greater than the 80% of average age of all customers?
SELECT T2.INCOME_K, T2.INHABITANTS_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID GROUP BY T2.INCOME_K, T2.INHABITANTS_K HAVING T1.age > 0.8 * AVG(T1.age);
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In customers with marital status of never married, what is the percentage of customers with income of 2500 and above?
SELECT CAST(SUM(CASE WHEN T2.INCOME_K > 2500 THEN 1.0 ELSE 0 END) AS REAL) * 100 / COUNT(*) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.MARITAL_STATUS = 'Never-married';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Find and list the id and geographic ID of the elderly customers with an education level below 3.
SELECT ID, GEOID FROM Customers WHERE EDUCATIONNUM < 3 AND age > 65;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the geographic id of places where the income is above average.
SELECT AVG(INCOME_K) FROM Demog;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Calculate the number of customers who did not respond in February of 2007.
SELECT COUNT(REFID) custmoer_number FROM Mailings1_2 WHERE RESPONSE = 'false' AND REF_DATE BETWEEN '2007-02-01' AND '2007-02-28';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many teenagers are working as Machine-op-inspct?
SELECT COUNT(ID) teenager_number FROM Customers WHERE OCCUPATION = 'Machine-op-inspct' AND age >= 13 AND age <= 19;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Of customers who provide other services, how many are from places where inhabitants are more than 20000?
SELECT COUNT(T2.GEOID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.OCCUPATION = 'Other-service' AND T2.INHABITANTS_K > 20;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the male customer in their twenties, how many are from places where the average income is more than 3000?
SELECT COUNT(T2.GEOID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Male' AND T2.INCOME_K > 3000 AND T1.age >= 20 AND T1.age <= 29;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What percentage of elderly customers who are never married in the place with geographic ID 24?
SELECT CAST(SUM(CASE WHEN T1.MARITAL_STATUS = 'never married' THEN 1.0 ELSE 0 END) AS REAL) * 100 / COUNT(*) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.GEOID = 24;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the customers with an average income per inhabitant above 3000, what percentage are in their eighties?
SELECT CAST(SUM(CASE WHEN T1.age BETWEEN 80 AND 89 THEN 1 ELSE 0 END) AS REAL) * 100 / COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T2.INCOME_K > 3000;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- How many of the customer's reference ID that has a TRUE response?
SELECT COUNT(REFID) FROM Mailings1_2 WHERE RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the customer's reference ID with true response.
SELECT REFID FROM Mailings1_2 WHERE RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the total number of widowed customers with an age below 50?
SELECT COUNT(ID) FROM Customers WHERE MARITAL_STATUS = 'Widowed' AND age < 50;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the geographic identifier with an number of inhabitants less than 30.
SELECT GEOID FROM Demog WHERE INHABITANTS_K < 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In geographic identifier from 10 to 30, how many of them has an income below 2000?
SELECT COUNT(GEOID) FROM Demog WHERE INCOME_K < 2000 AND GEOID >= 10 AND GEOID <= 30;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the marital status of the customer ages 62 with an level of education of 7?
SELECT DISTINCT MARITAL_STATUS FROM Customers WHERE EDUCATIONNUM = 7 AND age = 62;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List down the number of inhabitants of customers with a widowed marital status and false response .
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.MARITAL_STATUS = 'Widowed' AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the response and number of inhabitants of the oldest female customer?
SELECT T2.RESPONSE, T3.INHABITANTS_K FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.SEX = 'Female' ORDER BY T1.age DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the female customers with an level of education of 3 and below, list their income.
SELECT INCOME_K FROM Demog WHERE GEOID IN ( SELECT GEOID FROM Customers WHERE EDUCATIONNUM < 3 AND SEX = 'Female' );
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the level of education and income of customers ages from 30 to 55 with a true response.
SELECT T1.EDUCATIONNUM, T3.INCOME_K FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.age >= 30 AND T1.age <= 55 AND T2.RESPONSE = 'true';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In male customers ages from 30 to 50, how many of them has an income ranges from 2000 to 2300?
SELECT COUNT(T1.ID) FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Male' AND T1.age >= 30 AND T1.age <= 50 AND T2.INCOME_K >= 2000 AND T2.INCOME_K <= 2300;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the educationnum and response of customers within the age of 20 to 30 that has the highest number of inhabitants among the group.
SELECT T1.EDUCATIONNUM, T2.RESPONSE FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.age >= 20 AND T1.age <= 30 ORDER BY T3.INHABITANTS_K DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the income of female customers ages from 30 to 55 years old and has an occupation of machine-op-inspct?
SELECT T2.INCOME_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Female' AND T1.age >= 30 AND T1.age <= 55 AND T1.OCCUPATION = 'Machine-op-inspct';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the marital status and response of female customers with an level of education of 8 and above.
SELECT DISTINCT T1.MARITAL_STATUS, T2.RESPONSE FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.EDUCATIONNUM > 8 AND T1.SEX = 'Female';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the age of female customers within the number of inhabitants below 30?
SELECT age FROM Customers WHERE GEOID IN ( SELECT GEOID FROM Demog WHERE INHABITANTS_K < 30 ) AND SEX = 'Female';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the divorced male customers, give the income and response of those who has an level of education of 6 and above.
SELECT DISTINCT T3.INCOME_K, T2.RESPONSE FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.EDUCATIONNUM > 6 AND T1.SEX = 'Male' AND T1.MARITAL_STATUS = 'Divorced';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the occupation and response of female customers within the number of inhabitants range of 20 to 25?
SELECT DISTINCT T1.OCCUPATION, T2.RESPONSE FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID INNER JOIN Demog AS T3 ON T1.GEOID = T3.GEOID WHERE T1.SEX = 'Female' AND T3.INHABITANTS_K >= 20 AND T3.INHABITANTS_K <= 25;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- In male customers with an occupation handlers or cleaners, what is the percentage of customers with a true response?
SELECT CAST(SUM(CASE WHEN T2.RESPONSE = 'true' THEN 1.0 ELSE 0 END) AS REAL) * 100 / COUNT(T2.REFID) FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T1.OCCUPATION = 'Handlers-cleaners' AND T1.SEX = 'Male';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- List the income and number of inhabitants of customers with a reference ID greater than the 50% of average of number of false response?
SELECT T2.INCOME_K, T2.INHABITANTS_K FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID INNER JOIN Mailings1_2 AS T3 ON T1.ID = T3.REFID WHERE T3.REFID > ( SELECT 0.5 * COUNT(CASE WHEN RESPONSE = 'false' THEN 1 ELSE NULL END) / COUNT(RESPONSE) FROM Mailings1_2 );
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the ratio of male and female among the age of teenager when the education is above 10?
SELECT CAST(SUM(CASE WHEN SEX = 'Male' THEN 1 ELSE 0 END) AS REAL) / SUM(CASE WHEN SEX = 'Female' THEN 1 ELSE 0 END) FROM Customers WHERE age BETWEEN 13 AND 19 AND EDUCATIONNUM > 10;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- What is the geographic ID and total income per year when the average income is above 3300 dollar.
SELECT GEOID, INHABITANTS_K * INCOME_K * 12 FROM Demog WHERE INCOME_K > 3300;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Point out the greater one between the number of actual responding and not responding to mailing.
SELECT RESPONSE FROM Mailings1_2 GROUP BY RESPONSE ORDER BY COUNT(RESPONSE) DESC LIMIT 1;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Find out the yearly income of geographic ID when the customer is female and occupation as sales.
SELECT T2.INHABITANTS_K * T2.INCOME_K * 12 FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.SEX = 'Female' AND T1.OCCUPATION = 'Sales';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the geographic ID which has 33.658K of inhabitants, describe the education, occupation and age of female widow.
SELECT T1.EDUCATIONNUM, T1.OCCUPATION, T1.age FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T2.INHABITANTS_K = 33.658 AND T1.SEX = 'Female' AND T1.MARITAL_STATUS = 'Widowed';
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Find the response status to customer whose geographic ID of 134.
SELECT T2.RESPONSE FROM Customers AS T1 INNER JOIN mailings3 AS T2 ON T1.ID = T2.REFID WHERE T1.GEOID = 134;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Describe the average income per month and yearly income of the geographic ID in which customer of ID "209556" and "290135".
SELECT T2.INCOME_K, T2.INHABITANTS_K * T2.INCOME_K * 12 FROM Customers AS T1 INNER JOIN Demog AS T2 ON T1.GEOID = T2.GEOID WHERE T1.ID = 209556 OR T1.ID = 290135;
-- Database schema | Demog : GEOID [ INTEGER ] primary_key , INHABITANTS_K [ REAL ] , INCOME_K [ REAL ] , A_VAR1 [ REAL ] , A_VAR2 [ REAL ] , A_VAR3 [ REAL ] , A_VAR4 [ REAL ] , A_VAR5 [ REAL ] , A_VAR6 [ REAL ] , A_VAR7 [ REAL ] , A_VAR8 [ REAL ] , A_VAR9 [ REAL ] , A_VAR10 [ REAL ] , A_VAR11 [ REAL ] , A_VAR12 [ REAL ] , A_VAR13 [ REAL ] , A_VAR14 [ REAL ] , A_VAR15 [ REAL ] , A_VAR16 [ REAL ] , A_VAR17 [ REAL ] , A_VAR18 [ REAL ] | mailings3 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Customers : ID [ INTEGER ] primary_key , SEX [ TEXT ] , MARITAL_STATUS [ TEXT ] , GEOID [ INTEGER ] , EDUCATIONNUM [ INTEGER ] , OCCUPATION [ TEXT ] , age [ INTEGER ] | Mailings1_2 : REFID [ INTEGER ] primary_key , REF_DATE [ DATETIME ] , RESPONSE [ TEXT ] | Sales : EVENTID [ INTEGER ] primary_key , REFID [ INTEGER ] , EVENT_DATE [ DATETIME ] , AMOUNT [ REAL ] | -- -- Among the reference ID of under 10 who got response by marketing department, compare their education status.
SELECT T1.EDUCATIONNUM FROM Customers AS T1 INNER JOIN Mailings1_2 AS T2 ON T1.ID = T2.REFID WHERE T2.REFID < 10 AND T2.RESPONSE = 'true';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- How many community areas are there in Central Chicago?
SELECT COUNT(*) FROM Community_Area WHERE side = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Which district is the community area Lincoln Square grouped into?
SELECT side FROM Community_Area WHERE community_area_name = 'Lincoln Square';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Which district in Chicago has the most community areas?
SELECT side FROM Community_Area GROUP BY side ORDER BY COUNT(side) DESC LIMIT 1;
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Which community area has the least population?
SELECT community_area_name FROM Community_Area ORDER BY population ASC LIMIT 1;
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Who is the person responsible for the crime cases in Central Chicago?
SELECT commander FROM District WHERE district_name = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- What is the email address to contact the administrator of Central Chicago?
SELECT email FROM District WHERE district_name = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- To which community area does the neighborhood Albany Park belong?
SELECT T2.community_area_name FROM Neighborhood AS T1 INNER JOIN Community_Area AS T2 ON T1.community_area_no = T2.community_area_no WHERE T1.neighborhood_name = 'Albany Park';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- How many neighborhoods are there in the community area of Lincoln Square?
SELECT COUNT(T3.community_area_no) FROM ( SELECT T1.community_area_no FROM Community_Area AS T1 INNER JOIN Neighborhood AS T2 ON T1.community_area_no = T2.community_area_no WHERE community_area_name = 'Lincoln Square' GROUP BY T1.community_area_no ) T3;
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Please list the names of all the neighborhoods in the community area with the most population.
SELECT T1.neighborhood_name FROM Neighborhood AS T1 INNER JOIN Community_Area AS T2 ON T2.community_area_no = T2.community_area_no ORDER BY T2.population DESC LIMIT 1;
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Please list the names of all the neighborhoods in Central Chicago.
SELECT T2.neighborhood_name FROM Community_Area AS T1 INNER JOIN Neighborhood AS T2 ON T1.community_area_no = T2.community_area_no WHERE T1.side = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Please list the precise location coordinates of all the crimes in Central Chicago.
SELECT T2.latitude, T2.longitude FROM District AS T1 INNER JOIN Crime AS T2 ON T1.district_no = T2.district_no WHERE T1.district_name = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- How many crimes had happened in Central Chicago?
SELECT COUNT(*) FROM Crime AS T1 INNER JOIN District AS T2 ON T1.district_no = T2.district_no WHERE T2.district_name = 'Central';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Among all the crimes that had happened in Central Chicago, how many of them were cases of domestic violence?
SELECT COUNT(*) FROM Crime AS T1 INNER JOIN District AS T2 ON T1.district_no = T2.district_no WHERE T2.district_name = 'Central' AND T1.domestic = 'TRUE';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- Please list the case numbers of all the crimes with no arrest made in Central Chicago.
SELECT COUNT(*) FROM Crime AS T1 INNER JOIN District AS T2 ON T1.district_no = T2.district_no WHERE T2.district_name = 'Central' AND T1.arrest = 'FALSE';
-- Database schema | Community_Area : community_area_no [ INTEGER ] primary_key , community_area_name [ TEXT ] , side [ TEXT ] , population [ TEXT ] | District : district_no [ INTEGER ] primary_key , district_name [ TEXT ] , address [ TEXT ] , zip_code [ INTEGER ] , commander [ TEXT ] , email [ TEXT ] , phone [ TEXT ] , fax [ TEXT ] , tty [ TEXT ] , twitter [ TEXT ] | FBI_Code : fbi_code_no [ TEXT ] primary_key , title [ TEXT ] , description [ TEXT ] , crime_against [ TEXT ] | IUCR : iucr_no [ TEXT ] primary_key , primary_description [ TEXT ] , secondary_description [ TEXT ] , index_code [ TEXT ] | Neighborhood : neighborhood_name [ TEXT ] primary_key , community_area_no [ INTEGER ] Neighborhood.community_area_no = Community_Area.community_area_no | Ward : ward_no [ INTEGER ] primary_key , alderman_first_name [ TEXT ] , alderman_last_name [ TEXT ] , alderman_name_suffix [ TEXT ] , ward_office_address [ TEXT ] , ward_office_zip [ TEXT ] , ward_email [ TEXT ] , ward_office_phone [ TEXT ] , ward_office_fax [ TEXT ] , city_hall_office_room [ INTEGER ] , city_hall_office_phone [ TEXT ] , city_hall_office_fax [ TEXT ] , Population [ INTEGER ] | Crime : report_no [ INTEGER ] primary_key , case_number [ TEXT ] , date [ TEXT ] , block [ TEXT ] , iucr_no [ TEXT ] Crime.iucr_no = IUCR.iucr_no , location_description [ TEXT ] , arrest [ TEXT ] , domestic [ TEXT ] , beat [ INTEGER ] , district_no [ INTEGER ] Crime.district_no = District.district_no , ward_no [ INTEGER ] Crime.ward_no = Ward.ward_no , community_area_no [ INTEGER ] Crime.community_area_no = Community_Area.community_area_no , fbi_code_no [ TEXT ] Crime.fbi_code_no = FBI_Code.fbi_code_no , latitude [ TEXT ] , longitude [ TEXT ] | -- -- How many crimes had happened in the community area with the most population?
SELECT COUNT(T2.report_no) FROM Community_Area AS T1 INNER JOIN Crime AS T2 ON T1.community_area_no = T2.community_area_no GROUP BY T1.community_area_name ORDER BY T1.population DESC LIMIT 1;