code
stringlengths
1
13.8M
plot.catpredi.survival <- function(x, ...){ formula <- update(x$formula, as.formula(paste("~ . + pspline(", x$cat.var, ")", sep = ""))) formula <- as.formula(Reduce(paste, deparse(formula))) fit.survival <- coxph(formula, data = x$data) pos <- attr(terms.formula(formula, specials = c("pspline")),"specials")$pspline - 1 termplot(fit.survival, terms = pos, se = TRUE, ylabs = paste("f(",x$cat.var,")")) for(i in x$results$cutpoints) { abline(v = i, lty = 2) } }
NULL as_tbl <- function(x, ..., validate = FALSE) { tibble::as_tibble(x, ..., validate = FALSE) } tbl_frame <- function(...) { xs <- rlang::quos(..., .named = TRUE) if (length(xs) == 1L) { x <- eval_tidy(xs[[1]]) if (is.data.frame(x)) { return(as_tbl(x)) } } as_tbl(tibble:::lst_quos(xs, expand = TRUE)) } is_robust <- function(expr) { f <- rlang::expr_text(expr[[1]]) ("estimator" %in% names(expr) && expr$estimator == "mlr") || grepl("^robust\\:\\:glmRob$|^glmRob$|^MASS\\:\\:rlm$|^rlm$|^robustlmm\\:\\:rlmer$|^rlmer$", f) } is_ttest <- function(x) { grepl("^t|^htest|^ttest$", x, ignore.case = TRUE) } is_ols <- function(x) { grepl("^ols$|ordinary\\s?least\\s?squares", x, ignore.case = TRUE) } is_anova <- function(x) { grepl("anova|analysis of variance", x, ignore.case = TRUE) } is_log <- function(x) { grepl("^log$|^logistic|^binomial$", x, ignore.case = TRUE) } is_qlog <- function(x) { grepl("^quasi.?binom", x, ignore.case = TRUE) } is_pois <- function(x) { grepl("^pois$|poisson", x, ignore.case = TRUE) } is_qpois <- function(x) { grepl("^quasi.?pois", x, ignore.case = TRUE) } is_negbin <- function(x) { grepl("^negbin$|^negbinom$|negative\\s?binomial", x, ignore.case = TRUE) } is_sem <- function(x) { grepl("^sem$|structural equation|latent", x, ignore.case = TRUE) } is_mlm <- function(x) { grepl("^mlm$|multi.?level", x, ignore.case = TRUE) } std_model_type <- function(type) { if (is_ttest(type)) { type <- "ttest" } else if (is_ols(type)) { type <- "ols" } else if (is_log(type)) { type <- "log" } else if (is_qlog(type)) { type <- "qlog" } else if (is_pois(type)) { type <- "pois" } else if (is_qpois(type)) { type <- "qpois" } else if (is_negbinom(type)) { type <- "negbin" } else if (is_anova(type)) { type <- "anova" } else if (is_sem(type)) { type <- "sem" } else if (is_mlm(type)) { type <- "mlm" } type }
staticPlot <- function(expr, width = 600, height = 400) { expr <- substitute(expr) file <- tempfile(fileext = ".png") png(file, width, height) eval(expr, envir = parent.frame()) dev.off() staticImage(file) } staticImage <- function(file, style = "max-width:100%%;max-height:100%%") { data <- base64enc::base64encode(readBin(file, "raw", file.info(file)[1, "size"])) ext <- tools::file_ext(file) tags$img( src = sprintf("data:image/%s;base64,%s", ext, data), style = style ) }
save_spec = function (object, file = file.path(tempdir(), "spec.RData")) { if (inherits(object, c("regarima","regarima_spec","SA","SA_spec"))==FALSE) stop("The function must only be used with \"regarima\", \"regarima_spec\", \"SA\" and \"SA_spec\" objects", call. = FALSE) estimate <- s_estimate(object) transform <- s_transform(object) usrdef <- s_usrdef(object) predef.outliers <- s_preOut(object) predef.variables <- s_preVar(object) trading.days <- s_td(object) easter <- s_easter(object) outliers <- s_out(object) arima.dsc <- s_arima(object) predef.coef <- s_arimaCoef(object) forecast <- s_fcst(object) span <- s_span(object) if (inherits(object,c("SA","SA_spec")) & inherits(object,"X13")){ decomp <- s_x11(object) cspec <- "SA_saveX13" } else if (inherits(object,c("SA","SA_spec")) & inherits(object,"TRAMO_SEATS")){ decomp <- s_seats(object) cspec <- "SA_saveTS" } else if (inherits(object,"X13")) { decomp <- NA cspec <- "regarima_saveX13" } else { decomp <- NA cspec <- "regarima_saveTS" } spec <- list(estimate=estimate, transform=transform, usrdef = usrdef,predef.outliers=predef.outliers, predef.variables=predef.variables, trading.days=trading.days,easter= easter, outliers=outliers, arima.dsc=arima.dsc, predef.coef=predef.coef, forecast = forecast,span=span, decomp=decomp) class(spec) <- cspec save(spec, file = file) } load_spec <- function (file = "spec.RData") { object <- get(load(file = file)) if (inherits(object,c("SA_saveX13","SA_saveTS","regarima_saveX13","regarima_saveTS"))==FALSE) stop("No model specification was found in the file!\n") s.estimate <- object$estimate s.transform <- object$transform s.usrdef <- object$usrdef s.predef.outliers <- object$predef.outliers s.predef.variables <- object$predef.variables s.trading.days <- object$trading.days s.easter <- object$easter s.outliers <- object$outliers s.arima.dsc <- object$arima.dsc s.predef.coef <- object$predef.coef s.forecast <- object$forecast span <- object$span s.decomp <- object$decomp estimate<- rbind(s.estimate,rep(NA,length(s.estimate)),s.estimate) transform <- rbind(s.transform,rep(NA,length(s.transform)),s.transform) usrdef <- rbind(s.usrdef,rep(NA,length(s.usrdef)),s.usrdef) trading.days <- rbind(s.trading.days,rep(NA,length(s.trading.days)),s.trading.days) easter <- rbind(s.easter,rep(NA,length(s.easter)),s.easter) outliers <- rbind(s.outliers,rep(NA,length(s.outliers)),s.outliers) arima.dsc <- rbind(s.arima.dsc,rep(NA,length(s.arima.dsc)),s.arima.dsc) forecast <- rbind(s.forecast,rep(NA,length(s.estimate)),s.forecast) rownames(estimate)=c("Loaded","User_modif","Final") rownames(transform)=c("Loaded","User_modif","Final") rownames(usrdef)=c("Loaded","User_modif","Final") rownames(trading.days)=c("Loaded","User_modif","Final") rownames(easter)=c("Loaded","User_modif","Final") rownames(outliers)=c("Loaded","User_modif","Final") rownames(arima.dsc)=c("Loaded","User_modif","Final") rownames(forecast)=c("Loaded","User_modif","Final") userdef <-list(specification = usrdef, outliers = list(Predefined = s.predef.outliers, Final = s.predef.outliers), variables = list(Predefined = s.predef.variables, Final = s.predef.variables)) regression <- list(userdef=userdef, trading.days=trading.days, easter = easter) arima <- list(specification = arima.dsc, coefficients = list(Predefined = s.predef.coef, Final = s.predef.coef)) regarima <- list(estimate=estimate, transform=transform, regression=regression, outliers=outliers, arima=arima, forecast = forecast , span=span) if (inherits(object,"regarima_saveX13")){ class(regarima) <- c("regarima_spec","X13") return(regarima) } else if (inherits(object,"regarima_saveTS")){ class(regarima) <- c("regarima_spec","TRAMO_SEATS") return(regarima) } else if (inherits(object,"SA_saveX13")){ class(regarima) <- c("regarima_spec","X13") x11 <- rbind(s.decomp,rep(NA,length(s.decomp )),s.decomp) rownames(x11)=c("Loaded","User_modif","Final") class(x11) <- c("X11_spec","data.frame") z <- list(regarima = regarima, x11 = x11) class(z) <- c("SA_spec","X13") return(z) } else { class(regarima) <- c("regarima_spec","TRAMO_SEATS") seats <- rbind(s.decomp,rep(NA,length(s.decomp )),s.decomp) rownames(seats)=c("Loaded","User_modif","Final") class(seats) <- c("seats_spec","data.frame") z <- list(regarima = regarima, seats = seats) class(z) <- c("SA_spec","TRAMO_SEATS") return(z) } }
background.points.buffer <- function(points, radius, n, mask){ return(background.buffer(points = points, buffer.width = radius, mask = mask, return.type = "points", n = n)) }
GMLAbstractObject <- R6Class("GMLAbstractObject", inherit = ISOAbstractObject, private = list( xmlElement = "AbstractObject", xmlNamespacePrefix = "GML" ), public = list( initialize = function(xml = NULL, element = NULL, attrs = list(), defaults = list(), wrap = FALSE){ if(is.null(element)) element <- private$xmlElement super$initialize(xml, element, namespace = private$xmlNamespacePrefix, attrs = attrs, defaults = defaults, wrap = wrap) } ) )
"HDD_Minneapolis"
context("GET functions") skip_if_not(interactive(), "This set of tests should only be run manually") experigit <- create_repo_ref('emilyriederer', 'experigit') projmgr <- create_repo_ref('emilyriederer', 'projmgr') test_that( "zero item output is returned as type character (vs list)", { expect_type( projmgr:::get_engine("/issues", experigit, since = '4000-12-31'), "character") expect_type( get_issues(experigit, since = '4000-12-31'), "character") }) test_that( "single item output is wrapped into list of length 1", { expect_equal( length(projmgr:::get_engine("/issues/1", experigit)), 1) expect_equal( length(get_issues(experigit, number = 1)), 1) }) test_that( "get_issues gives message when hitting page limit", { expect_message( get_issues(experigit, limit = 1, state = "all")) }) test_that( "Issue number appended to events / comments only when positive length", { expect_true( all(vapply( get_issue_comments(projmgr, 9) , function(x) "number" %in% names(x), logical(1))) ) expect_null( names( get_issue_comments(projmgr, 1) )) })
plot.CountsEPPM <- function (x, which = 1:4, caption = c("Residuals vs indices of obs.", "Cook's distance plot", "Leverage vs predicted values", "Residuals vs linear predictor", "Normal Q-Q plot of residuals", "Predicted vs observed values"), sub.caption = " ", main = "", ask = prod(par("mfcol"), 1) < length(which) && dev.interactive(), ..., type = "spearson") { if (!is.numeric(which) || any(which < 1) || any(which > 6)) stop("'which' must be in 1:6") types <- c("pearson", "deviance", "response", "likelihood", "sdeviance", "spearson") Types <- c("Pearson residuals", "Deviance residuals", "Raw response residuals", "Likelihood residuals", "Standardized deviance residuals", "Standardized Pearson residuals") type <- match.arg(type, types) Type <- Types[type == types] res <- residuals(x, type = type) n <- length(res) k <- length(x$coefficients$mean) show <- rep(FALSE, 6) show[which] <- TRUE Main <- rep("", 6) Main[which] <- rep(main, length.out = sum(show)) one.fig <- prod(par("mfcol")) == 1 if (ask) { op <- par(ask = TRUE) on.exit(par(op)) } if (show[1]) { plot(1:n, res, xlab = "Obs. number", ylab = Type, main = Main[1], ...) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[1], 3, 0.25) abline(h = 0, lty = 3, col = "gray") } if (show[2]) { plot(1:n, cooks.distance(x), xlab = "Obs. number", ylab = "Cook's distance", type = "h", main = Main[2]) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[2], 3, 0.25) } if (show[3]) { if (x$data.type==TRUE) { fitted.values <- fitted.CountsEPPM(x) } else { fitted.values <- c(rep(0,n)) nstart <- 1 nend <- 0 for (ilist in 1:length(fitted.CountsEPPM(x))) { ninlist <- sum(x$list.data[[ilist]]) for ( i in 1:length(x$list.data[[ilist]])) { nt <- x$list.data[[ilist]][i] if (nt>0) { nend <- nend + nt fitted.values[nstart:nend] <- fitted.CountsEPPM(x)[ilist] nstart <- nstart + nt } } } } plot(fitted.values, hatvalues.CountsEPPM(x), xlab = "Predicted values", ylab = "hatvalues as leverage", main = Main[3], ...) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[3], 3, 0.25) } if (show[4]) { if (x$data.type==TRUE) { linear.predictor <- predict(x, type = "linear.predictor.mean") } else { linear.predictor <- c(rep(0,n)) nstart <- 1 nend <- 0 for (ilist in 1:length(predict(x, type = "linear.predictor.mean"))) { ninlist <- sum(x$list.data[[ilist]]) for ( i in 1:length(x$list.data[[ilist]])) { nt <- x$list.data[[ilist]][i] if (nt>0) { nend <- nend + nt linear.predictor[nstart:nend] <- predict(x, type = "linear.predictor.mean")[ilist] nstart <- nstart + nt } } } } plot(linear.predictor, res, xlab = "Linear predictor mean", ylab = Type, main = Main[4], ...) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[4], 3, 0.25) abline(h = 0, lty = 3, col = "gray") } if (show[5]) { qqnorm(y = as.vector(residuals.CountsEPPM(x, type)), main = Main[5], xlab = "Normal quantiles", ylab = Type) qqline(y = as.vector(residuals.CountsEPPM(x, type)), distribution = qnorm) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[5], 3, 0.25) } if (show[6]) { y <- if (is.null(x$y)) model.response(model.frame(x)) else x$y plot(y, fitted(x), xlab = "Observed values", ylab = "Predicted values", main = Main[6], ...) if (one.fig) { title(sub = sub.caption, ...) } mtext(caption[6], 3, 0.25) abline(0, 1, lty = 2, col = "gray") } if (!one.fig && par("oma")[3] >= 1) mtext(sub.caption, outer = TRUE, cex = 1.25) invisible() }
mergeBenchmarkResults = function(bmrs) { assertList(bmrs, types = "BenchmarkResult") unique.tt = unique(unlist(lapply(bmrs, function(x) getBMRObjects(x, fun = getTaskType)))) if (length(unique.tt) != 1) { stopf("Different task types found: %s", collapse(unique.tt)) } task.rin = peelList(lapply(bmrs, function(bmr) getBMRObjects(bmr, fun = function(x) getRRPredictions(x)$instance$desc))) task.rin = groupNamedListByNames(task.rin) unique.rin = vlapply(task.rin, function(x) length(unique(x)) == 1) if (any(!unique.rin)) { stopf("Different resample description found for tasks: %s", collapse(names(unique.rin)[!unique.rin])) } learner.ids = unique(unlist(lapply(bmrs, getBMRLearnerIds))) task.ids = unique(unlist(lapply(bmrs, getBMRTaskIds))) all.combos = expand.grid(task.id = task.ids, learner.id = learner.ids) all.combos = stri_paste(all.combos$task.id, all.combos$learner.id, sep = " - ") existing.combos = rbindlist(lapply(bmrs, function(bmr) { getBMRAggrPerformances(bmr, as.df = TRUE)[, c("task.id", "learner.id")] }), use.names = TRUE) existing.combos = stri_paste(existing.combos$task.id, existing.combos$learner.id, sep = " - ") if (!identical(sort(existing.combos), sort(all.combos))) { dupls = existing.combos[duplicated(existing.combos)] diff = setdiff(all.combos, existing.combos) msg = collapse(unique(c(dupls, diff)), "\n* ") stopf("The following task - learner combination(s) occur either multiple times or are missing: \n* %s\n", msg) } lrns.merged = peelList(lapply(bmrs, getBMRLearners)) lrns.merged = unique(lrns.merged) res.merged = peelList(extractSubList(bmrs, "results", simplify = FALSE)) res.merged = groupNamedListByNames(res.merged) measures.merged = peelList(lapply(bmrs, getBMRMeasures)) measures.merged = unique(measures.merged) for (i in seq_along(res.merged)) { for (j in seq_along(res.merged[[i]])) { res.merged[[i]][[j]] = addRRMeasure(res.merged[[i]][[j]], measures.merged) } } makeS3Obj("BenchmarkResult", results = res.merged, measures = measures.merged, learners = lrns.merged) } peelList = function(x) { unlist(x, recursive = FALSE) } groupNamedListByNames = function(xs, name = sort(unique(names(xs)))) { assertList(xs, names = "named") assertCharacter(name) res = lapply(name, function(x) { ret = xs[names(xs) == x] names(ret) = NULL peelList(ret) }) names(res) = name res[order(names(res))] }
test_that("compute_iat recognize the rigth class", { data("raw_data") sciat_data <- clean_sciat(raw_data, sbj_id = "Participant", block_id = "blockcode", latency_id = "latency", accuracy_id = "correct", block_sciat_1 = c("test.sc_dark.Darkbad", "test.sc_dark.Darkgood"), block_sciat_2 = c("test.sc_milk.Milkbad", "test.sc_milk.Milkgood"), trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1"), demo_id = "blockcode", trial_demo = "demo") expect_error(compute_iat(raw_data), Dscore = "d1") expect_error(compute_iat(sciat_data[[1]]), Dscore = "d2") }) test_that("compute_iat stops if Dscore is not specified", { data("raw_data") iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant", block_id = "blockcode", mapA_practice = "practice.iat.Milkbad", mapA_test = "test.iat.Milkbad", mapB_practice = "practice.iat.Milkgood", mapB_test = "test.iat.Milkgood", latency_id = "latency", accuracy_id = "correct", trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1")) expect_error(compute_iat(iat_cleandata[[1]])) }) test_that("compute_iat produce a dataframe of class dscore (all scores)", { skip_on_cran() data("raw_data") iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant", block_id = "blockcode", mapA_practice = "practice.iat.Milkbad", mapA_test = "test.iat.Milkbad", mapB_practice = "practice.iat.Milkgood", mapB_test = "test.iat.Milkgood", latency_id = "latency", accuracy_id = "correct", trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1")) ds <- paste0(rep("d",6), 1:6 ) check_compD <- list() scores <- list() for(i in 1:length(ds)){ scores[[i]] <- compute_iat(iat_cleandata[[1]], Dscore = ds[i]) expect_equal(class(scores[[i]])[2], "dscore") } }) test_that("compute_iat produce a dataframe with the same number of sbjs for all", { skip_on_cran() data("raw_data") iat_cleandata <- clean_iat(raw_data, sbj_id = "Participant", block_id = "blockcode", mapA_practice = "practice.iat.Milkbad", mapA_test = "test.iat.Milkbad", mapB_practice = "practice.iat.Milkgood", mapB_test = "test.iat.Milkgood", latency_id = "latency", accuracy_id = "correct", trial_id = "trialcode", trial_eliminate = c("reminder", "reminder1")) ds <- paste0(rep("d",6), 1:6 ) check_compD <- list() scores <- list() for(i in 1:length(ds)){ scores[[i]] <- compute_iat(iat_cleandata[[1]], Dscore = ds[i]) expect_equal(nrow(scores[[i]]), length(unique(iat_cleandata[[1]]$participant)) ) } })
gtm_triggers_list <- function(account_id, container_id, workspace_id) { if (any(missing(account_id), missing(container_id), missing(workspace_id) )) { stop("Account Id, Container Id and Workspace Id are all required for this function") } path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = "" ) res <- gtm_list(path_args = path_args, type = "trigger") return(res) } gtm_triggers_get <- function(account_id, container_id, workspace_id, trigger_id) { if (any(missing(account_id), missing(container_id), missing(workspace_id), missing(trigger_id) )) { stop("Account Id, Container Id, Workspace Id and Trigger Id are all required for this function") } path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = trigger_id ) res <- gtm_get(path_args = path_args) return(res) } gtm_triggers_create <- function(account_id, container_id, workspace_id, trigger_object) { if (any(missing(account_id), missing(container_id), missing(workspace_id) )) { stop("Account Id, Container Id and Workspace Id are all required for this function") } if (missing(trigger_object)) stop("A Trigger Object is required for this function") path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = "" ) res <- gtm_create(path_args = path_args, body = trigger_object) myMessage(sprintf('Trigger "%s" (%s) has been created', res$name,res$triggerId) ,level=3) return(res) } gtm_triggers_update <- function(account_id, container_id, workspace_id, trigger_id, trigger_object) { if (any(missing(account_id), missing(container_id), missing(workspace_id), missing(trigger_id) )) { stop("Account Id, Container Id, Workspace Id and Trigger Id are all required for this function") } if (missing(trigger_object)) stop("A Trigger Object is required for this function") path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = trigger_id ) res <- gtm_update(path_args = path_args, body = trigger_object) myMessage(sprintf('Trigger %s - "%s" has been updated',res$triggerId, res$name) ,level=3) return(res) } gtm_triggers_delete <- function(account_id, container_id, workspace_id, trigger_id, force = c(TRUE,FALSE)) { if(any(missing(account_id), missing(container_id), missing(workspace_id), missing(trigger_id) )) { stop("Account Id, Container Id, Workspace Id and Trigger Id are all required for this function") } path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = trigger_id ) if (missing(force)) force <- "FALSE" force <- as.character(force) force <- match.arg(force) force <- as.logical(force) if (force) { res<-gtm_delete(path_args = path_args) } else { switch( menu(c("Yes", "No"), title = sprintf("This will delete Trigger %s. Are you sure you want to continue?", trigger_id)), { res<-gtm_delete(path_args = path_args) }, { cancelled() } ) } if (length(res) == 0) { myMessage(sprintf("Trigger %s has been deleted", trigger_id), level = 3) } } gtm_triggers_revert <- function(account_id, container_id, workspace_id, trigger_id) { if(any(missing(account_id), missing(container_id), missing(workspace_id), missing(trigger_id) )) { stop("Account Id, Container Id, Workspace Id and Trigger Id are all required for this function") } path_args <- list( accounts = account_id, containers = container_id, workspaces = workspace_id, triggers = trigger_id ) res <- gtm_action(path_args = path_args, action = "revert") myMessage(sprintf("Changes to trigger %s (%s) have been reverted", res$trigger$name, res$zone$triggerId), level = 3) return(res$trigger) }
context("SplitCall") test_that("SplitCall works", { call1 <- SortArgs( PasteAndDep(substitute(UKAnophelesPlumbeus)), PasteAndDep(substitute(UKAir)), PasteAndDep(substitute(OneHundredBackground)), PasteAndDep(substitute(LogisticRegression)), PasteAndDep(substitute(PrintMap)), TRUE ) split1 <- SplitCall(call1) expect_true(inherits(split1, "character")) expect_equal(length(split1), 6) call2 <- SortArgs( PasteAndDep(substitute(UKAnophelesPlumbeus)), PasteAndDep(substitute("UKAir")), PasteAndDep(substitute(BackgroundAndCrossvalid(k = 2))), PasteAndDep(substitute(list(LogisticRegression, LogisticRegression))), PasteAndDep(substitute(Chain(PrintMap, PrintMap))), TRUE ) split2 <- SplitCall(call2) expect_true(inherits(split2, "character")) expect_equal(length(split2), 6) call3 <- SortArgs( PasteAndDep(substitute(UKAnophelesPlumbeus(k = "awd", v = 2))), PasteAndDep(substitute(Chain("UKAir", "UKAir"))), PasteAndDep(substitute(list(BackgroundAndCrossvalid(k = 2), BackgroundAndCrossvalid(k = 2, l = 3)))), PasteAndDep(substitute(list(LogisticRegression, LogisticRegression))), PasteAndDep(substitute(Chain(PrintMap(l = 2), PrintMap(l = 2, k = 3, r = "23")))), TRUE ) split3 <- SplitCall(call3) expect_true(inherits(split3, "character")) expect_equal(length(split3), 6) })
renv_difftime_format <- function(time, digits = 2L) { units <- attr(time, "units") %||% "" if (units == "secs" && time < 0.1) { time <- time * 1000 units <- "milliseconds" } units <- switch( units, secs = "seconds", mins = "minutes", hours = "hours", days = "days", weeks = "weeks", units ) elapsed <- format(unclass(signif(time, digits = digits))) paste(elapsed, units) } renv_difftime_format_short <- function(time, digits = 2L) { elapsed <- signif(time, digits = digits) if (nchar(elapsed) == 1L) elapsed <- paste(elapsed, ".0", sep = "") units <- switch( attr(time, "units"), secs = "s", mins = "m", hours = "h", days = "d", weeks = "w" ) paste(elapsed, units, sep = "") }
tbl_survfit <- function(x, ...) { UseMethod("tbl_survfit", x) } tbl_survfit.list <- function(x, times = NULL, probs = NULL, statistic = NULL, label = NULL, label_header = NULL, estimate_fun = NULL, missing = NULL, conf.level = 0.95, reverse = FALSE, quiet = NULL, ...) { ci.sep <- get_theme_element("pkgwide-str:ci.sep", default = ", ") statistic <- statistic %||% get_theme_element("tbl_survfit-arg:statistic") %||% paste0("{estimate} ({conf.low}", ci.sep, "{conf.high})") missing <- missing %||% "\U2014" quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE if (rlang::is_string(label)) { label <- inject(everything() ~ !!label) lifecycle::deprecate_warn( "1.3.6", "gtsummary::tbl_survfit(label=)", details = "`label=` argument no longer accepts a single string. Pass formula list.") } assert_package("survival", "tbl_survfit()") if (purrr::every(x, ~ !inherits(.x, "survfit"))) { stop("Argument `x=` must be class 'survfit' created from the `survival::survfit()` function.", call. = FALSE ) } if (c(is.null(times), is.null(probs)) %>% sum() != 1) { stop("One and only one of `times=` and `probs=` must be specified.", call. = FALSE) } if (!rlang::is_string(statistic) || !rlang::is_string(label_header %||% "")) { stop("`statistic=` and `label_header=` arguments must be strings of length one.", call. = FALSE ) } if (reverse == TRUE && !is.null(probs)) { rlang::inform("`reverse=TRUE` argument ignored for survival quantile estimation.") } estimate_type <- ifelse(is.null(times), "probs", "times") estimate_fun <- estimate_fun %||% switch(estimate_type, probs = getOption("gtsummary.tbl_survfit.probs.estimate_fun") %||% partial(style_sigfig, digits = 2), times = getOption("gtsummary.tbl_survfit.times.estimate_fun") %||% partial(style_percent, symbol = TRUE) ) %>% gts_mapper("tbl_survfit(estimate_fun=)") tbl_survfit_inputs <- as.list(environment()) meta_data <- tibble( survfit = x, tidy = map(.data$survfit, ~broom::tidy(.x)), stratified = map_lgl(.data$tidy, ~ "strata" %in% names(.x)), variable = survfit_to_var(.data$survfit, .data$stratified, .data$tidy, quiet) ) label <- .formula_list_to_named_list( x = label, var_info = meta_data_to_var_info(meta_data), arg_name = "label", type_check = chuck(type_check, "is_string", "fn"), type_check_msg = chuck(type_check, "is_string", "msg") ) meta_data <- meta_data %>% mutate( var_label = survfit_to_label(.data$survfit, .data$variable, .data$stratified, label) ) meta_data <- meta_to_df_stats(meta_data, inputs = tbl_survfit_inputs, estimate_type = estimate_type, estimate_fun = estimate_fun, missing = missing, statistic = statistic ) if (quiet == FALSE && !identical(meta_data$variable, unique(meta_data$variable))) { paste( "tbl_survfit: The variable list in `.$meta_data` is not unique.", "This could pose a problem with subsequent `tbl_survfit` calls,", "e.g. `tbl_survfit() %>% add_p()`" ) %>% stringr::str_wrap() %>% rlang::inform() } table_body <- meta_data %>% select(.data$var_label, .data$table_body) %>% unnest(.data$table_body) %>% select(.data$variable, .data$var_label, everything()) x <- .create_gtsummary_object( table_body = table_body, meta_data = meta_data, inputs = tbl_survfit_inputs ) lbls <- meta_data$df_stats[[1]] %>% select(.data$col_name, .data$col_label) %>% distinct() %>% tibble::deframe() %>% as.list() x <- expr(modify_header(x, label = !!paste0("**", translate_text("Characteristic"), "**"), !!!lbls)) %>% eval() x$call_list <- list(tbl_survfit = match.call()) class(x) <- c("tbl_survfit", "gtsummary") x } tbl_survfit.survfit <- function(x, ...) { tbl_survfit.list(list(x), ...) } tbl_survfit.data.frame <- function(x, y, include = everything(), ...) { include <- dplyr::select(x, {{ include }}) %>% names() check_haven_labelled(x) y <- enexpr(y) y_surv <- tryCatch( expr(with(!!x, !!y)) %>% eval(), error = function(e) { paste( "There was are error constructing the `y = Surv()` object from the", "data frame passed in `x=`, and the outcome passed in `y=`.", "All columns in `y=` should appear in `x=`.\n\n" ) %>% stringr::str_wrap() %>% c(as.character(e)) %>% stop(call. = FALSE) } ) if (!inherits(y_surv, "Surv")) { paste( "Together, the data frame in `x=`, and the survival outcome in `y=`", "must construct `Surv` oject, e.g. `with(trial, Surv(ttdeath, death))`" ) %>% stringr::str_wrap() %>% stop(call. = FALSE) } y_vars <- inject(all.vars(~ !!y)) x_vars <- include %>% setdiff(y_vars) survfit_expr_list <- tryCatch( map( x_vars, function(.x) expr(survival::survfit(!!y ~ !!sym(.x), data = !!x)) %>% eval() ), error = function(e) { paste( "There was are error constructing the list `survfit()` objects from the", "data frame passed in `x=`, and the outcome passed in `y=`." ) %>% stringr::str_wrap() %>% stop(call. = FALSE) } ) tbl_survfit.list(x = survfit_expr_list, ...) } meta_to_df_stats <- function(meta_data, inputs, estimate_type, estimate_fun, missing, statistic) { meta_data %>% mutate( df_stats = pmap( list(.data$survfit, .data$variable, .data$tidy, .data$var_label), ~ switch(estimate_type, "times" = survfit_time(..1, variable = ..2, times = inputs$times, label_header = inputs$label_header, conf.level = inputs$conf.level, reverse = inputs$reverse, quiet = inputs$quiet, tidy = ..3, var_label = ..4, estimate_fun = estimate_fun ), "probs" = survfit_prob(..1, variable = ..2, probs = inputs$probs, label_header = inputs$label_header, conf.level = inputs$conf.level, quiet = inputs$quiet, tidy = ..3, var_label = ..4, estimate_fun = estimate_fun ) ) ), table_body = map2( .data$df_stats, .data$var_label, function(df_stats, var_label) { strata <- intersect("strata", names(df_stats)) %>% list() %>% compact() table_body <- df_stats %>% mutate_at( vars(.data$estimate, .data$conf.low, .data$conf.high), ~ coalesce(as.character(estimate_fun(.)), missing) ) %>% mutate( statistic = glue(.env$statistic) %>% as.character(), row_type = switch(length(strata) == 0, "label" ) %||% "level" ) %>% select(c("variable", "row_type", "label", "col_name", "statistic")) %>% tidyr::pivot_wider( id_cols = c(.data$variable, .data$row_type, .data$label), names_from = c(.data$col_name), values_from = c(.data$statistic) ) if (nrow(table_body) > 1) { table_body <- table_body %>% select(.data$variable) %>% distinct() %>% mutate( row_type = "label", label = var_label ) %>% bind_rows(table_body) } table_body } ) ) } survfit_prob <- function(x, variable, probs, label_header, conf.level, quiet, tidy, var_label, estimate_fun) { strata <- intersect("strata", names(tidy)) %>% list() %>% compact() df_stat <- purrr::map2_dfr( probs, seq_along(probs), ~ stats::quantile(x, probs = .x) %>% as.data.frame() %>% tibble::rownames_to_column() %>% set_names(c("strata", "estimate", "conf.low", "conf.high")) %>% mutate( prob = .x, col_name = paste("stat", .y, sep = "_") ) ) %>% mutate( variable = .env$variable, label = switch(length(.env$strata) == 0, var_label ) %||% str_sub(strata, str_locate(strata, fixed("="))[1] + 1), col_label = .env$label_header %||% switch(get_theme_element("pkgwide-str:language", default = "en") %in% "es", "**{style_percent(prob, symbol = TRUE)} {translate_text('Percentile')}**" ) %||% "**{style_percent(prob, symbol = TRUE)} {translate_text('Percentile')}**" %>% glue() %>% as.character() ) if (length(strata) > 0) { df_stat$variable_levels = df_stat$label } if (length(strata) == 0) df_stat <- select(df_stat, -.data$strata) for (column in c("estimate", "conf.low", "conf.high")) { attr(df_stat[[column]], "fmt_fun") <- estimate_fun } df_stat } survfit_time <- function(x, variable, times, label_header, conf.level, reverse, quiet, tidy, var_label, estimate_fun) { strata <- intersect("strata", names(tidy)) %>% list() %>% compact() multi_state <- inherits(x, "survfitms") if (multi_state == TRUE) { state <- unique(tidy$state) %>% setdiff("(s0)") %>% purrr::pluck(1) if (identical(quiet, FALSE)) { rlang::inform(glue( "tbl_survfit: Multi-state model detected. Showing probabilities into state '{state}'" )) } tidy <- dplyr::filter(tidy, .data$state == .env$state) } tidy <- tidy %>% mutate_at(vars(!!!strata), ~ factor(., levels = unique(.))) %>% mutate_at( vars(.data$conf.high, .data$conf.low), ~ ifelse(is.na(.) & .data$std.error == 0, .data$estimate, .) ) %>% select(any_of(c("time", "estimate", "conf.high", "conf.low", "strata"))) %>% bind_rows( group_by(., !!!syms(strata)) %>% slice(1) %>% mutate( time = 0, estimate = ifelse(multi_state, 0, 1), conf.low = ifelse(multi_state, 0, 1), conf.high = ifelse(multi_state, 0, 1) ) ) %>% ungroup() df_stat <- tidy %>% group_by(., !!!syms(strata)) %>% mutate(time_max = max(.data$time)) %>% ungroup() %>% full_join( select(tidy, !!!syms(strata)) %>% distinct() %>% mutate( time = list(.env$times), col_name = list(paste("stat", seq_len(length(.env$times)), sep = "_")) ) %>% unnest(cols = c(.data$time, .data$col_name)), by = unlist(c(strata, "time")) ) %>% arrange(!!!syms(strata), .data$time) %>% group_by(!!!syms(strata)) %>% tidyr::fill(.data$estimate, .data$conf.high, .data$conf.low, .data$time_max, .direction = "down" ) %>% ungroup() %>% filter(!is.na(.data$col_name)) %>% mutate_at( vars(.data$estimate, .data$conf.high, .data$conf.low), ~ ifelse(.data$time > .data$time_max, NA_real_, .) ) %>% mutate( variable = .env$variable, label = switch(length(.env$strata) == 0, var_label ) %||% str_sub(strata, str_locate(strata, fixed("="))[1] + 1), col_label = .env$label_header %||% paste0("**", translate_text("Time"), " {time}**") %>% glue() %>% as.character() ) %>% select( any_of(c("variable", "label", "strata", "col_name", "col_label")), everything(), -.data$time_max ) if (length(strata) > 0) { df_stat$variable_levels = df_stat$label } if (reverse == TRUE) { df_stat <- df_stat %>% mutate_at(vars(.data$estimate, .data$conf.low, .data$conf.high), ~ 1 - .) %>% dplyr::rename(conf.low = .data$conf.high, conf.high = .data$conf.low) } for (column in c("estimate", "conf.low", "conf.high")) { attr(df_stat[[column]], "fmt_fun") <- estimate_fun } df_stat } survfit_to_var <- function(survfit_list, stratified, tidy, quiet) { purrr::pmap_chr( list(survfit_list, seq_along(survfit_list), stratified, tidy), function(x, i, stratified, tidy) { if (stratified == FALSE) { return( ifelse(length(survfit_list) == 1, "..overall..", glue("..overall_{i}..")) ) } var <- word(tidy$strata[1], 1, sep = fixed("=")) if (quiet == FALSE && stringr::str_count(tidy$strata[1], pattern = fixed("=")) > 1 && stringr::str_count(tidy$strata[1], pattern = fixed(", ")) >= 1) { paste( "The `tbl_survfit()` function supports `survfit()` objects with a", "single stratifying variable, and it looks like you may have more.", "Errors or unexpected output may occur." ) %>% str_wrap() %>% inform() } var } ) } survfit_to_label <- function(survfit_list, varlist, stratified, label) { purrr::pmap_chr( list(survfit_list, varlist, seq_along(survfit_list), stratified), function(x, v, i, stratified) { if (!is.null(label[[v]])) { return(label[[v]]) } if (stratified == FALSE) { return(translate_text("Overall")) } data <- x$call %>% as.list() %>% pluck("data") label <- NULL if (!is.null(data)) { label <- tryCatch(rlang::eval_tidy(data)[[v]] %>% attr("label"), warning = function(w) NULL, error = function(e) NULL ) } label %||% v } ) } safe_survfit_eval <- function(x) { tryCatch( eval(x), error = function(e) { paste( "There was an error executing {.code add_n()} or {.code add_p()}.", "The error may be a due to the construction of the original", "{.code survival::survfit()} object.", "Please visit this help file for a possible solution:", "{.code ?tbl_survfit_errors}" ) %>% cli_alert_danger() e } ) }
test_that("can predict over polygons in plane", { library("sp") library("dplyr") data("meuse") meuse$std <- sqrt(0.05066) coordinates(meuse) = ~x+y data("meuse.grid") gridded(meuse.grid) = ~x + y HexPts <- spsample(meuse.grid, type = "hexagonal", cellsize = 200) HexPols <- HexPoints2SpatialPolygons(HexPts) HexPts_df <- SpatialPointsDataFrame(HexPts,data.frame(fs=rep(1,length(HexPts)))) HexPols_df <- SpatialPolygonsDataFrame(HexPols, over(HexPols,meuse.grid)) G <- auto_basis(manifold = plane(),data=meuse,nres = 2,prune=10,type = "Gaussian") expect_is(G, "Basis") S1 <- eval_basis(G,HexPts_df) S2 <- eval_basis(G,HexPols_df) expect_is(S1, "Matrix") expect_is(S2, "Matrix") expect_identical(dim(S1), c(length(HexPols), nbasis(G))) expect_identical(dim(S2), c(length(HexPols), nbasis(G))) HexPols_df <- auto_BAUs(manifold = plane(), cellsize = c(400,400), type = "grid", data = meuse, convex=-0.05, nonconvex_hull=FALSE) HexPols_df$fs <- 1 expect_is(HexPols_df, "SpatialPixelsDataFrame") f <- log(zinc) ~ 1 S <- SRE(f,data = list(meuse), basis = G, BAUs = HexPols_df, est_error = FALSE) S <- SRE.fit(S, n_EM = 10, print_lik=F) expect_is(S, "SRE") HexPols_df <- predict(S) expect_is(HexPols_df, "SpatialPixelsDataFrame") expect_true(all(c("var","mu","sd") %in% names(HexPols_df))) S@sigma2fshat <- 0 HexPols_df2 <- predict(S) expect_is(HexPols_df2, "SpatialPixelsDataFrame") expect_true(all(c("var","mu","sd") %in% names(HexPols_df2))) })
library("dplyr") library("seplyr") starwars %>% group_by_se("homeworld") %>% summarize_se(c("mean_height" := "mean(height, na.rm = TRUE)", "mean_mass" := "mean(mass, na.rm = TRUE)", "count" := "n()")) grouped_mean <- function(data, grouping_variables, value_variables, count_name = "count") { result_names <- paste0("mean_", value_variables) expressions <- paste0("mean(", value_variables, ", na.rm = TRUE)") calculation <- result_names := expressions data %>% group_by_se(grouping_variables) %>% summarize_se(c(calculation, count_name := "n()")) %>% ungroup() } starwars %>% grouped_mean(grouping_variables = c("eye_color", "skin_color"), value_variables = c("mass", "birth_year"))
expected <- eval(parse(text="2819")); test(id=0, code={ argv <- eval(parse(text="list(2819.50000004)")); do.call(`trunc`, argv); }, o=expected);
simplify_conditional <- function(x, ...){ x <- check_validator(x) is_cond <- is_conditional(x) | is_categorical(x) vals <- to_exprs(x) for (i in which(is_cond)){ cond <- vals[[i]] cond <- simplify_non_constraining(cond, vals) vals[[i]] <- cond cond <- simplify_non_relaxing(cond, vals) vals[[i]] <- cond } do.call(validate::validator, vals) } simplify_non_relaxing <- function(cond_expr, vals){ clauses <- as_dnf(cond_expr) clauses[] <- lapply(clauses, function(clause){ test_rules <- do.call(validate::validator, c(vals, clause)) if (is_infeasible(test_rules)){ return(NULL) } clause }) is_null <- sapply(clauses, is.null) as.expression(clauses[!is_null], as_if = TRUE)[[1]] } simplify_non_constraining <- function(cond_expr, vals){ clauses <- as_dnf(cond_expr) for (clause in clauses){ clause_neg <- invert_or_negate(clause) test_rules <- do.call(validate::validator, c(vals, clause_neg)) if (is_infeasible(test_rules)){ return(clause) } } cond_expr }
collection_deletealias <- function(conn, alias, raw = FALSE, callopts = list()) { conn$collection_deletealias(alias, raw, callopts) }
readWMDData <- function(fid, fileInfo, data, skipLarge=FALSE, debug=FALSE) { error <- FALSE tryCatch({ dataLength <- pamBinRead(fid, 'int32', n=1) startPos <- seek(fid) if(dataLength==0) { return(list(data=data, error=error)) } version <- fileInfo$moduleHeader$version if(version <= 1) { data$startSample <- pamBinRead(fid, 'int64', n=1) data$channelMap <- pamBinRead(fid, 'int32', n=1) } data$nSlices <- pamBinRead(fid, 'int16', n=1) if(version >= 1) { data$amplitude <- pamBinRead(fid, 'int16', n=1) / 100 } if(version == 1) { data$nDelays <- pamBinRead(fid, 'int8', n=1) data$delays <- pamBinRead(fid, 'int16', n = data$nDelays) data$delays <- data$delays / fileInfo$moduleHeader$delayScale } if(skipLarge) { seek(fid, startPos + dataLength, origin='start') return(list(data=data, error=error)) } data$sliceData <- list() data$contour <- rep(0, data$nSlices) data$contWidth <- rep(0, data$nSlices) for(i in 1:data$nSlices) { aSlice <- list() aSlice$sliceNumber <- pamBinRead(fid, 'int32', n=1, seek=skipLarge) aSlice$nPeaks <- pamBinRead(fid, 'int8', n=1) aSlice$peakData <- matrix(0, nrow=4, ncol=aSlice$nPeaks) for(p in 1:aSlice$nPeaks) { sss <- pamBinRead(fid, 'int16', n=4, seek=skipLarge) aSlice$peakData[,p] <- sss } data$sliceData[[i]] <- aSlice data$contour[i] <- aSlice$peakData[2,1] data$contWidth[i] <- aSlice$peakData[3,1] - aSlice$peakData[1,1] + 1 } data$meanWidth <- mean(data$contWidth) return(list(data=data, error=error)) }, error = function(e) { if(debug) { print(paste0('Error reading ', fileInfo$fileHeader$moduleType, ' Data read:')) print(data) print(e) } error <- TRUE return(list(data=data, error=error)) }) }
search.history <- function(list1, diagnose=FALSE, verbose=TRUE) { MC <- match.call() if(verbose) { print("", quote = FALSE) print("Running search.history", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) print("Call:", quote = FALSE) print(MC) print("", quote = FALSE) } x1 <- list1$"Rows in stage" lenx1 <- length(x1) if(diagnose) {Hmisc::prn(x1); Hmisc::prn(lenx1)} IN <- OUT <- vector("list",lenx1) lenIN <- rep(0,lenx1) uu <- x1[[1]] if(!is.null(uu)) IN[[1]] <- uu for(i in 2:lenx1){ if(diagnose) Hmisc::prn(i) uu <- x1[[i]] if(!is.null(uu)){ vv <- x1[[i-1]] if(is.null(vv)) IN[[i]] <- uu else{ rr <- match(vv, uu, nomatch = 0) IN[[i]] <- uu[-1*rr] tt <- match(uu, vv, nomatch=0) OUT[[i]] <- vv[-1*tt] } } } for(i in 1:lenx1){ lenIN[i] <- length(IN[[i]]) } maxIN <- max(lenIN) histIN <- matrix(0,nrow=lenx1,ncol=maxIN) histOUT <- matrix(0,nrow=lenx1,ncol=(maxIN-1)) for(i in 1:lenx1){ uu <- c(IN[[i]],rep(0,maxIN)) uu <- uu[1:maxIN] histIN[i,] <- uu vv <- c(OUT[[i]],rep(0,lenx1)) vv <- vv[1:(maxIN-1)] histOUT[i,] <- vv } lasthist <- dim(histOUT)[2] INname <- paste("IN",1:maxIN,sep="") histIN <- as.data.frame(histIN) names(histIN) <- INname history <- histIN if(sum(histOUT)>0){ orijOUT <- dim(histOUT)[2] for(j in (maxIN-1):2){ if(sum(histOUT[,j])==0) {histOUT <- histOUT[,-j]} else {break} } histOUT <- as.matrix(histOUT,nrow=maxIN) dimOUT2 <- dim(histOUT)[2] if(dimOUT2 > 0){ history <- cbind(histIN,histOUT) history <- as.data.frame(history) OUTname <- paste("OUT",1:dimOUT2,sep="") names(history) <- c(INname,OUTname) } } if(verbose) { print("", quote = FALSE) print("Finished running search.history", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) } list(history=history, Call=MC) }
knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, fig.retina = 3, comment = " ) library("logitr") mnl_pref <- logitr( data = yogurt, outcome = 'choice', obsID = 'obsID', pars = c('price', 'feat', 'brand') ) summary(mnl_pref) coef(mnl_pref) wtp_mnl_pref <- wtp(mnl_pref, price = "price") wtp_mnl_pref mnl_wtp <- logitr( data = yogurt, outcome = 'choice', obsID = 'obsID', pars = c('feat', 'brand'), price = 'price', modelSpace = 'wtp', numMultiStarts = 10, startVals = wtp_mnl_pref$Estimate ) summary(mnl_wtp) coef(mnl_wtp) wtpCompare(mnl_pref, mnl_wtp, price = 'price')
fmply <- function(input, outputs, FUN, ..., key.sep = "\t", sep = "\t", skip = 0, header = TRUE, nblocks = Inf, stringsAsFactors = FALSE, colClasses = NULL, select = NULL, drop = NULL, col.names = NULL, parallel = 1) { input <- OpenInput(input, skip) head <- GetHeader(input, col.names, header, sep) dtstrsplit <- DefineFormatter(sep, colClasses, stringsAsFactors, head, select, drop) if (parallel > 1 && .Platform$OS.type != "unix") { warning("parallel > 1 is not supported on non-unix systems") parallel <- 1 } cr <- iotools::chunk.reader(input, sep = key.sep) i <- 0 res <- list() if (parallel == 1) { while (i < nblocks && length(r <- iotools::read.chunk(cr))) { d <- dtstrsplit(r) u <- unique(d[[1]]) d <- d[d[[1]] %in% u[1:(min(nblocks - i, length(u)))]] l <- by(d, d[, 1], FUN, ...) m <- lapply(seq_along(outputs), function(j) { rbindlist(lapply(l, "[[", j)) }) if (length(l[[1]]) > length(outputs)) { n <- lapply(l, "[[", length(l[[1]])) res <- append(res, n) } if (i == 0) { lapply(seq_along(outputs), function(j) { if (is.null(m[[j]]) || ncol(m[[j]]) == 0L) return() if (all(names(m[[j]]) == paste0("V", 1:length(m[[j]])))) { fwrite(m[[j]], file = outputs[j], col.names = FALSE, sep = sep, quote = FALSE) } else { fwrite(m[[j]], file = outputs[j], col.names = TRUE, sep = sep, quote = FALSE) } }) } else { lapply(seq_along(outputs), function(j) { if (is.null(m[[j]]) || ncol(m[[j]]) == 0L) return() fwrite(m[[j]], file = outputs[j], append = TRUE, sep = sep, quote = FALSE, col.names = FALSE) }) } i <- i + length(l) } } else { worker_queue = list() for (j in 1:max(parallel, 1)) { r <- iotools::read.chunk(cr) if (length(r) == 0) break worker_queue[[j]] <- parallel::mcparallel({ d <- dtstrsplit(r); by(d, d[, 1], FUN, ...) }) } if (length(worker_queue) == 0) return(NULL) if (length(r) > 0) r <- iotools::read.chunk(cr) while (i < nblocks && length(worker_queue)) { l <- parallel::mccollect(worker_queue[[1]])[[1]] l <- l[1:(min(nblocks - i, length(l)))] m <- lapply(seq_along(outputs), function(j) { rbindlist(lapply(l, "[[", j)) }) if (length(l[[1]]) > length(outputs)) { n <- lapply(l, "[[", length(l[[1]])) res <- append(res, n) } if (i == 0) { lapply(seq_along(m), function(j) { if (is.null(m[[j]]) || ncol(m[[j]]) == 0L) return() if (all(names(m[[j]]) == paste0("V", 1:length(m[[j]])))) { fwrite(m[[j]], file = outputs[j], col.names = FALSE, sep = sep, quote = FALSE) } else { fwrite(m[[j]], file = outputs[j], col.names = TRUE, sep = sep, quote = FALSE) } }) } else { lapply(seq_along(m), function(j) { if (is.null(m[[j]]) || ncol(m[[j]]) == 0L) return() fwrite(m[[j]], file = outputs[j], append = TRUE, sep = sep, quote = FALSE, col.names = FALSE) }) } worker_queue[1] = NULL i <- i + length(l) if (length(r) > 0) { worker_queue[[length(worker_queue) + 1]] <- parallel::mcparallel({ d <- dtstrsplit(r); by(d, d[, 1], FUN, ...) }) r <- iotools::read.chunk(cr) } } } close(input) if (length(res)) res else invisible(i) }
CorrSNSol <- function(Nres,SNres,CvCase,Conf,Xscld,Xmean,Xsd,XsdOutPrd,lglikdif,limlnk2,OptCntrl,getvcov=TRUE,bordertol=1e-2,maxsk=0.99527) { GetvcovSingD <- function(Res) { SngDparnam <- paste("mu_",Xnames,sep="") for (i in 1:p) SngDparnam <- c(SngDparnam,paste("Sigma_",Xnames[i],"_",Xnames[i:p],sep="")) SngDparnam <- c(SngDparnam,paste("gamma1_",Xnames,sep="")) npar <- SKnpar(Conf,p,p/2) InFData <- try( sn.infoMv( dp=list(xi=Res$ksi,Omega=Res$Omega,alpha=Res$alpha), y=Xscld, x=matrix(1,nrow=n,ncol=1) ) ) if ( is.null(InFData) || class(InFData)[1] == "try-error" || is.null(InFData$asyvar.cp) ) { return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL,status="Invalid") ) } if (Conf==1) { mleCPvcov <- InFData$asyvar.cp rownames(mleCPvcov) <- colnames(mleCPvcov) <- SngDparnam } else { nparC1 <- 2*p + p*(p+1)/2 parind <- c(1:p,p+SigCind(Conf,p/2),(nparC1-p+1):nparC1) mleCPvcov <- Safepdsolve(InFData$info.cp[parind,parind],maxlnk2=limlnk2,scale=TRUE) if ( !is.null(mleCPvcov) ) { rownames(mleCPvcov) <- colnames(mleCPvcov) <- SngDparnam[parind] } } if (is.null(mleCPvcov)) return( list(mleCPvcov=NULL,muEse=NULL,SigmaEse=NULL,gamma1Ese=NULL) ) mleCPvcov <- mleCPvcov * SNVCovscaling(Conf,p,Xsd,k=1) CPStderr <- sqrt(diag(mleCPvcov)) muEse <- CPStderr[1:p] gammaind <- (npar-p+1):npar gamma1Ese <- CPStderr[gammaind] SigmaEse <- matrix(nrow=p,ncol=p) cnt <- p for (j1 in 1:p) for (j2 in j1:p) { if (FreePar(q,j1,j2,Conf)) { cnt <- cnt+1 SigmaEse[j1,j2] <- SigmaEse[j2,j1] <- CPStderr[cnt] } } names(gamma1Ese) <- rownames(SigmaEse) <- colnames(SigmaEse) <- names(muEse) <- Xnames list(mleCPvcov=mleCPvcov,muEse=muEse,SigmaEse=SigmaEse,gamma1Ese=gamma1Ese,status="Regular") } p <- ncol(Xscld) q <- p/2 n <- nrow(Xscld) n1scvct <- rep(1,n) Xnames <- names(Xmean) zmu <- (Nres@mleNmuE-Xmean)/Xsd if (Conf==1) { zSigma <- Nres@CovConfCases[[CvCase]]$mleSigE/XsdOutPrd DP <- cnvCPtoDP(p,zmu,zSigma,rep(0.,p),limlnk2=limlnk2) newpar <- c(DP$ksi,DP$alpha/DP$omega) SNStdDtRes <- SNCnf1MaxLik(Xscld,initpar=newpar,grouping=NULL,limlnk2=limlnk2,OptCntrl=OptCntrl) } else { zSigma <- Nres@CovConfCases[[CvCase]]$mleSigE/XsdOutPrd SigmaSrpar <- GetCovPar(zSigma,Conf,test=FALSE) newpar <- c(zmu,SigmaSrpar,rep(0.,p)) SNStdDtRes <- SNCMaxLik(Xscld,Config=Conf,initpar=newpar,grouping=NULL,limlnk2=limlnk2,OptCntrl=OptCntrl) } NewSNres <- list() NewSNres$muE <- Xmean + Xsd*SNStdDtRes$mu NewSNres$ksiE <- Xmean + Xsd*SNStdDtRes$ksi NewSNres$SigmaE <- XsdOutPrd*SNStdDtRes$Sigma NewSNres$gamma1E <- SNStdDtRes$gamma1 NewSNres$OmegaE <- XsdOutPrd*SNStdDtRes$Omega NewSNres$alphaE <- SNStdDtRes$alpha NewSNres$logLik <- SNStdDtRes$lnLik + lglikdif names(NewSNres$muE) <- names(NewSNres$ksiE) <- Xnames if ( !is.null(NewSNres$gamma1E) && !is.null(NewSNres$alphaE) && !is.null(NewSNres$SigmaE) && !is.null(NewSNres$OmegaE) ) { names(NewSNres$gamma1E) <- names(NewSNres$alphaE) <- dimnames(NewSNres$SigmaE)[[1]] <- dimnames(NewSNres$SigmaE)[[2]] <- dimnames(NewSNres$OmegaE)[[1]] <- dimnames(NewSNres$OmegaE)[[2]] <- Xnames } if (getvcov) { if ( (SNStdDtRes$c2 > bordertol) || (maxsk-max(abs(SNStdDtRes$gamma1)) < bordertol) ) { vcovl <- GetvcovSingD(SNStdDtRes) NewSNres$status <- vcovl$status NewSNres$mleCPvcov <- vcovl$mleCPvcov NewSNres$muEse <- vcovl$muEse NewSNres$SigmaEse <- vcovl$SigmaEse NewSNres$gamma1Ese <- vcovl$gamma1Ese } else { NewSNres$status <- "Onborder" } } else { NewSNres$status <- "OnHold" NewSNres$mleCPvcov <- NewSNres$muEse <- NewSNres$SigmaEse <- NewSNres$gamma1Ese <- NULL } NewSNres }
.runThisTest <- Sys.getenv("RunAllRcppTests") == "yes" if (.runThisTest) { context(desc = "Testing make_model") testthat::test_that( desc = "Observational equivalence corresponds to model equivalence.", code = { m1 <- make_model("X -> Y -> Z <- U") m2 <- make_model("U -> Z <- Y <- X") expect_equal(m1$dag, m2$dag) expect_equal(m1$nodes, m2$nodes) expect_equal(m1$nodal_types, m2$nodal_types) expect_equal(m1$parameters_df, m2$parameters_df) expect_equal(m1$causal_types, m2$causal_types) } ) context(desc = "Testing make_data") model <- make_model("X -> M -> Y") testthat::test_that( desc = "data strategy works", code = { strat <- make_data(model, n = 8) expect_equal(nrow(strat), 8) set.seed(1) strat <- make_data( model, n = 20, nodes = list(c("X", "Y"), "M"), probs = list(1, .5), subsets = list(NULL, "X==1 & Y==0")) subsetM <- strat[!is.na(strat$M), ] expect_equal(subsetM$X, rep(1, nrow(subsetM))) expect_equal(subsetM$Y, rep(0, nrow(subsetM))) }) testthat::test_that( desc = "make_data errors and messages when it should.", code = { model <- make_model("X -> M -> Y") expect_error(make_data(model, nodes = c("X","Y"), probs = c(1,2), subsets = c("X==1", "Y==1", "X==0"))) expect_error(make_data(model, nodes = list("X","M","Y"), n_steps = 1)) expect_warning( make_data( model, n = 8, n_steps = c(2,2), nodes = list(c("X", "Y"), "M"), probs = list(1, .5), subsets = list(NULL, "X==1 & Y==0"))) } ) }
.onAttach <- function(lib, pkg) { packageStartupMessage(" \n Welcome to enviPick version 1.4 \n -> For large file.mzXML, have enough memory allocated to R - e.g. use memory.limit(size=xy) on windows. \n -> Ensure to provide centroided & baseline-corrected data. \n -> Type webpick() to use the browser UI - use a default browser other than Internet Explorer, e.g. Firefox, Google Chrome \n "); }
error.table <- function(data, Raw_Ind=1){ check_cov <- recode.check(data, Raw_Ind) Error_Ind <- check_cov$Error_Ind RR_Star <- relative.risk(data,Raw_Ind) RR_Star1 <- RR_Star$RR_Star1 RR_Star2 <- RR_Star$RR_Star2 PatternNumber <- RR_Star$PatternNumber AbsRisk <- absolute.risk(data, Raw_Ind, Avg_White=0) R_Hyp <- as.numeric(as.character(check_cov$R_Hyp)) NB_Cat <- as.character(check_cov$NB_Cat) AM_Cat <- as.character(check_cov$AM_Cat) AF_Cat <- as.character(check_cov$AF_Cat) NR_Cat <- as.character(check_cov$NR_Cat) CharRace <- as.character(check_cov$CharRace) set_T1_missing <- as.numeric(as.character(check_cov$set_T1_missing)) set_T2_missing <- as.numeric(as.character(check_cov$set_T2_missing)) set_HyperP_missing <- as.character(check_cov$set_HyperP_missing) set_R_Hyp_missing <- as.character(check_cov$set_R_Hyp_missing) if (length(which(Error_Ind!=0))==0){ error_table <- NULL print("NO ERROR!") } if (length(which(Error_Ind!=0))!=0){ error_table <- array("*", dim=c(2*length(which(is.na(AbsRisk))),14)) origin_update <- cbind(data$ID, data$T1, data$T2, data$N_Biop, data$HypPlas, R_Hyp, data$AgeMen, data$Age1st, data$N_Rels, data$Race, RR_Star1, RR_Star2, AbsRisk, PatternNumber) compare_update <- cbind(data$ID, set_T1_missing, set_T2_missing, NB_Cat, set_HyperP_missing, set_R_Hyp_missing, AM_Cat, AF_Cat, NR_Cat, CharRace, RR_Star1, RR_Star2, AbsRisk, PatternNumber) ID_update <- which(is.na(AbsRisk)) origin_update <- origin_update[ID_update,] compare_update <- compare_update[ID_update,] if (length(ID_update)==1){ error_table[1,] <- origin_update error_table[2,] <- compare_update error_table[2, 11:14] <- "" } if (length(ID_update)>1){ for (i in 1:length(ID_update)){ error_table[2*i-1,] <- origin_update[i,] error_table[2*i,] <- compare_update[i,] error_table[2*i, 11:14] <- "" } } colnames(error_table) <- c("ID", "T1", "T2", "N_Biop", "HypPlas", "R_Hyp", "AgeMen", "Age1st", "N_Rels", "Race", "RR_Star1", "RR_Star2", "AbsRisk", "PatternNum") error_table<-data.frame(error_table, row.names=NULL) return(error_table) } }
library(decompr) data(leather) list2env(leather, environment()) w <- decomp(x = inter, y = final, k = countries, i = industries, o = out, method = "wwz") context("output format") test_that("output size matches", { expect_equal(length(w), 29 ) expect_equal(dim(w)[1], 27 ) }) test_that("output format matches", { expect_match(typeof(w[,5]), "double") }) test_that("verbose computation 1/2", expect_message(decomp(x=inter, y=final, k=countries, i=industries, o=out, method = "wwz", verbose = TRUE), "Starting decomposing the trade flow")) test_that("verbose computation 2/2", expect_message(decomp(x=inter, y=final, k=countries, i=industries, o=out, method = "wwz", verbose = TRUE), "16/16, elapsed time:")) context("custom v") va <- out - colSums(inter) w.2 <- decomp(x = inter, y = final, k = countries, i = industries, o = out, v = va, method = "wwz") test_that("specifying v leaves output unchanged", expect_identical(w.2, w)) va[4:9] <- 0 w.arg <- decomp(x = inter, y = final, k = countries, i = industries, o = out, v = va, method = "wwz") test_that("only argentina has positive numbers", expect_true(any(w.arg$DVA_FIN[1:9] > 0))) test_that("turkey and germany are 0", expect_true(all(w.arg$DVA_FIN[10:27] == 0))) va <- out - colSums(inter) va[1:9 %% 3 != 0] <- 0 w.transport <- decomp(x = inter, y = final, k = countries, i = industries, o = out, v = va, method = "wwz") within.country <- w.transport[w.transport$Exporting_Country == w.transport$Importing_Country, "DVA_FIN"] test_that("only within-country flows are 0", expect_true(all(within.country == 0))) non_within.country <- w.transport[w.transport$Exporting_Country != w.transport$Importing_Country, "DVA_FIN"] test_that("all others should be greater than 0", expect_true(all(non_within.country > 0)))
Doptrcd.maeT<-function(trt.N,col.N,theta,nrep,itr.cvrgval) { del.1<-matrix(10^20,trt.N,3) desbest.1<-matrix(0,nrep*2,col.N) doptbest.1<-matrix(0,nrep,2) for(irep in 1:nrep){ des<-intcrcd.mae(trt.N,col.N) if(trt.N==col.N&trt.N>3&irep<(trt.N-1)) {in.desns=matrix(0,(trt.N-3)*2,col.N) in.desns0=rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1)) for(i in 1:(trt.N-3)) {in.desns01=cbind(rbind(seq(1,(trt.N-i)),c(seq(1,(trt.N-i))[2:(trt.N-i)],1)),rbind(rep(1,i),((trt.N-i+1):trt.N))); in.desns[c((i-1)*2+1,i*2),]=in.desns01} in.desns=rbind(rbind(seq(1,trt.N),c(seq(1,trt.N)[2:trt.N],1)),in.desns) des=in.desns[c((irep-1)*2+1,irep*2),]} cmat<-cmatrcd.mae(trt.N,col.N,theta,des) degv<-sort(eigen(cmat)$values) degvp<-degv[2:length(degv)] dopt<-prod(1/degvp) dcold=dopt descold=t(des) cdel<-1000 while( abs(cdel)>=0.000000001){ ivaldcold={} for (i in 1:col.N){ m=1; for (m in 1:2){ j=1; for (j in 1:trt.N){ temp=descold[i,] if(m==1) { if(j==descold[i,1]|j==descold[i,2]) {dopt=dcold; del.1[j,]<-c(descold[i,1],(dcold-dopt),dopt); next} else { descold[i,]=c(j,descold[i,2])}} if(m==2) { if(descold[i,2]==j|j==descold[i,1]) {dopt=dcold; del.1[j,]<-c(descold[i,2],(dcold-dopt),dopt); next} else { descold[i,]=c(descold[i,1],j)}} trtin<-contrasts(as.factor(t(descold)),contrasts=FALSE)[as.factor(t(descold)),] R.trt<-t(trtin)%*%trtin if (rankMatrix(R.trt)[1]<trt.N) {dopt=dcold; descold[i,]=temp; if(m==1) {del.1[j,]<-c(descold[i,1],(dcold-dopt),dopt)} else { del.1[j,]<-c(descold[i,2],(dcold-dopt),dopt)}; next} cmato=cmatrcd.mae(trt.N,col.N, 0,t(descold)) egv<-sort(eigen(cmato)$values) if(egv[2]<0.000001) {dopt=dcold; descold[i,]=temp; if(m==1) {del.1[j,]<-c(descold[i,1],(dcold-dopt),dopt)} else { del.1[j,]<-c(descold[i,2],(dcold-dopt),dopt)}; next} cmat=cmatrcd.mae(trt.N,col.N,theta,t(descold)) degv<-sort(eigen(cmat)$values) degvp<-degv[2:length(degv)] dopt<-prod(1/degvp) del.n<-del.1[j,]<-c(j,(dcold-dopt),dopt) descold[i,]=temp } del.1<-del.1[order(del.1[,3]),] delbest=t(del.1[1,]) if (m==1) { if (delbest[1]==descold[i,2]) { descold[i,]= descold[i,]} else{ descold[i,]=c(delbest[1],descold[i,2]); cdel=delbest[2]; dcold=delbest[3]}} else { if (descold[i,1]==delbest[1]) {descold[i,]= descold[i,] } else{ descold[i,]=c(descold[i,1],delbest[1]); cdel=delbest[2]; dcold=delbest[3] }} } ivaldcold=rbind(ivaldcold, c(i,dcold)) if(i>itr.cvrgval) if(all(ivaldcold[c(i-(itr.cvrgval-2),i),2]==ivaldcold[i-(itr.cvrgval-1),2])) break } } cdel<-1000 while( abs(cdel)>=0.000000001){ dopt=dcold del.2<-matrix(10^20,col.N+1,3) del.2[col.N+1,]<-c(col.N+1,0,dcold) for(i in 1:col.N){ temp=descold[i,] descold[i,]=rev(descold[i,]) cmato=cmatrcd.mae(trt.N,col.N, 0,t(descold)) egv<-sort(eigen(cmato)$values) if(egv[2]<0.000001) {dopt2=10^20; del.2[i,]<-c(i,(dcold-dopt2),dopt2); next} cmat=cmatrcd.mae(trt.N,col.N,theta,t(descold)) degv<-sort(eigen(cmat)$values) degvp<-degv[2:length(degv)] dopt2<-prod(1/degvp) del.2[i,]<-c(i,(dcold-dopt2),dopt2) descold[i,]=temp } del.2<-del.2[order(del.2[,3]),] delbest=t(del.2[1,]) if(delbest[1]<=col.N) {descold[delbest[1],]=rev(descold[delbest[1],]); cdel=delbest[2]; dcold=delbest[3]} else {cdel=0} } if (irep==1) {desbest.1=t(descold)} else {desbest.1=rbind(desbest.1,t(descold))} doptbest.1[irep,]=c(irep,dcold) } best=doptbest.1[order(doptbest.1[,2]),] nb=best[1,1] Dscore<-best[1,2] Doptde<- desbest.1[c((nb-1)*2+1,nb*2),] tkmessageBox(title="Search completed",message=paste("Search completed",sep="")) cnames=paste0("Ary",1:col.N) dimnames(Doptde)=list(c("Dye 1:", "Dye 2:"),cnames) Dopt_sum2<-list("v"=trt.N,"b"=col.N,theta=theta,nrep=nrep,itr.cvrgval=itr.cvrgval, "OptdesF"=Doptde,"Optcrtsv" =Dscore) return(Dopt_sum2) }
NULL repr_plotly1.plotly <- function(obj, ...) fromJSON(plotly::plotly_json(obj, jsonedit = FALSE)) repr_plotly1.ggplot <- repr_plotly1.plotly
setClass("Dinamic.programming", contains = "Exhaustive.model.search.algorithm" )
library(factorMerger) dfWithoutCovariates <- generateMultivariateSample(20,10) dfWithCovariates <- dfWithoutCovariates dfWithCovariates$covariates <- data.frame(runif(20), rnorm(20)) context("Check mergeFactors() function") test_that("Wrong input",{ expect_error(mergeFactors()) expect_error(mergeFactors(dfWithCovariates$response)) expect_error(mergeFactors(dfWithCovariates$factor)) }) test_that("Output format",{ expect_is(mergeFactors(dfWithCovariates$response, dfWithCovariates$factor), "factorMerger") expect_is(mergeFactors(dfWithCovariates$response, dfWithCovariates$factor, method = "fast-adaptive"), "factorMerger") }) context("Check groupStats() function") test_that("Wrong input",{ expect_error(groupsStats()) expect_error(groupsStats(dfWithoutCovariates)) }) test_that("Output format",{ expect_is(groupsStats(mergeFactors(dfWithCovariates$response, dfWithCovariates$factor)), "data.frame") })
rXb <- function(n, p, s0, xtype = c("toeplitz", "exp.decay", "equi.corr"), btype = "U[-2,2]", permuted = FALSE, iteration = NA, do2S = TRUE, x.par = switch(xtype, "toeplitz" = 0.9, "equi.corr" = 0.8, "exp.decay" = c(0.4, 5)), verbose = TRUE) { xtype <- match.arg(xtype) stopifnot(is.character(btype), length(btype) == 1, n == as.integer(n), length(n) == 1, n >= 1, p == as.integer(p), length(p) == 1, p >= 1, s0== as.integer(s0),length(s0)== 1, 0 <= s0, s0 <= p) do.seed <- is.numeric(iteration) && !is.na(iteration) if(do.seed) { if(verbose) { cat("A value for the argument iteration has been specified:\n") cat("The seed will be set for reproducibility, the old RNGstate will be restored after the data generation.\n") } R.seed <- get(".Random.seed", envir = .GlobalEnv) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) seed <- iteration + 2 set.seed(seed) } x <- rX(n = n, p = p, xtype = xtype, permuted = permuted, do2S = do2S, par = x.par) if(do.seed && s0 > 0 && !grepl("^bfix", btype)) set.seed(seed) beta <- rb(p = p, s0 = s0, btype = btype) list(x=x, beta=beta) } rX <- function(n, p, xtype, permuted, do2S = TRUE, par = switch(xtype, "toeplitz" = 0.9, "equi.corr" = 0.8, "exp.decay" = c(0.4, 5))) { xtype <- tolower(xtype) stopifnot(is.numeric(par), is.finite(par)) Sigma <- switch(xtype, "toeplitz" = { indices <- toeplitz(0:(p-1)) stopifnot(length(par) == 1) cov <- par ^ abs(indices) if(do2S) solve(solve(cov)) else cov }, "equi.corr" = { stopifnot(length(par) == 1) cov <- matrix(par, p,p) diag(cov) <- 1 if(do2S) solve(solve(cov)) else cov }, "exp.decay" = { stopifnot(length(par) == 2) indices <- toeplitz(0:(p-1)) solve(par[1]^ (abs(indices)/par[2])) }, stop("Invalid 'xtype': Must be one of 'toeplitz', 'equi.corr' or 'exp.decay'")) x <- mvrnorm(n, rep(0,p), Sigma) if(permuted) x[, sample.int(ncol(x))] else x } rb <- function(p, s0, btype) { stopifnot(s0 <= p, p >= 0, length(s0) == 1, length(p) == 1, is.character(btype), length(btype) == 1) invalid.btype.txt <- "Invalid btype: Please provide a btype of the form 'bfix*' for a fixed value or 'U[*,*]', where * are two numbers, the lower and upper bounds." if(grepl("^U\\[",btype) && grepl("\\]$", btype) && sapply(regmatches(btype, gregexpr(",", btype)), length) == 1) { split.btype <- strsplit(sub("^U\\[", '', sub("\\]$", '', btype)), ",")[[1]] lower <- as.numeric(split.btype[1]) upper <- as.numeric(split.btype[2]) if(is.na(lower) || is.na(upper) || length(lower) != 1 || length(upper) != 1) stop(invalid.btype.txt) b <- runif(s0, lower, upper) } else if(grepl("^bfix", btype)) { b <- as.numeric(sub("^bfix", "", btype)) if(is.na(b)) stop(invalid.btype.txt) b <- rep(b, s0) } else stop(invalid.btype.txt) c(b, rep(0, p - s0)) }
caThreshold_at_sensitivity <- function(diseaseData, userFormula, control_sensitivity, new_covariates) { if(!is.numeric(control_sensitivity)) { control_sensitivity <- as.numeric(control_sensitivity) } if(sum(control_sensitivity>1)>0 | sum(control_sensitivity<0)>0) { stop("control_sensitivity should be between 0 and 1!") } rqfit <- NULL if (length(control_sensitivity) == 1) { expr1 <- paste0("rqfit <- rq(", userFormula, ", tau = ", 1-control_sensitivity, ", data = diseaseData)") eval(parse(text = expr1)) new_thres <- predict.rq(rqfit, newdata = new_covariates) } else { new_thres <- c() for(j in 1:length(control_sensitivity)) { expr1 <- paste0("rqfit <- rq(", userFormula, ", tau = ", 1-control_sensitivity[j], ", data = diseaseData)") eval(parse(text = expr1)) tmp <- predict.rq(rqfit, newdata = new_covariates) new_thres <- cbind(new_thres, tmp) } colnames(new_thres) = paste0("control_sens=", control_sensitivity) } return(new_thres) }
validate_kernel_ranged_groups <- function(c, timestamp, gamma, beta) { r_s <- 1 freq <- 3 lines_grg <- nrow(c$rgs$time) lines_grg_closed <- nrow(c$rgs_closed$time) to_remove <- NULL for (i in 1:lines_grg) { sup <- length(unique(c$rgs$occ[[i]][, 2])) freq <- sup / (timestamp - (c$rgs$time[i, r_s]) + 1) if (freq < gamma) { if (sum(c$rgs$group[[i]]) >= beta) { lines_grg_closed <- lines_grg_closed + 1 c$rgs_closed$time <- rbind(c$rgs_closed$time, c$rgs$time[i, ]) c$rgs_closed$group[[lines_grg_closed]] <- c$rgs$group[[i]] c$rgs_closed$occ[[lines_grg_closed]] <- c$rgs$occ[[i]] } to_remove <- append(to_remove, i) } } if (! is.null(to_remove)) { c$rgs$time <- c$rgs$time[-to_remove, , drop = FALSE] c$rgs$group <- c$rgs$group[-to_remove] c$rgs$occ <- c$rgs$occ[-to_remove] } return(c) }
PeakGroup<-function (aif1,aif2,aif3) { if(missing(aif3)){ file1<-aif1$annotation file2<-aif2$annotation file1Raw1<-aif1$RawData1 file1Raw2<-aif1$RawData2 file2Raw1<-aif2$RawData1 file2Raw2<-aif2$RawData2 }else{ file1<-aif1$annotation file2<-aif2$annotation file3<-aif3$annotation f123<-c() f123<-rbind(file1,file2,file3) f123<-f123[order(f123$Metabolite),] for(i in 1:length(levels(f123$Metabolite))){ name<-levels(f123$Metabolite)[i] peakG<-c() peakG <- f123[which(f123$Metabolite == name), ] peakG<-peakG[,-8] ppmdif<-((as.numeric(peakG[,2])-peakG[,13])/peakG[,13])*1000000 peakGG<-cbind(peakG,ppmdif) peakGF<-unique(peakGG) write.csv2(peakGF,paste0("PeakGroup",name,".csv")) } } }
tadd<-function(...){ y<-Inf z<-cbind(list(...)) n<-length(z) if(n==1) { tvectorAdd(z[[1]]) } else{ for (i in 1:length(z)) { if(is.numeric(z[[i]])){ y<-if(y<z[[i]]) y else z[[i]] }else return(stop("arguments must be numeric values")) } return(y) } }
ChinaPop = structure(c(1.09, 1.43, 6.09, 6.02, 4.62, 0.97, 2.57, 2.67, 0.96, 2.21, 5.02, 6.2, 5.98, 7.83, 5.83, 5.25, 3.05, 5.15, 7.02, 8.16, 8.93, 3, 2.9, 7.38, 7.97, 10.79, 4.01, 6.02, 9.49, 10.98, 11.38, 1538, 1043, 6851, 3355, 2386, 4221, 2716, 3820, 1778, 7475, 4898, 6120, 3535, 4311, 9248, 9380, 5710, 6326, 9194, 4660, 828, 2798, 8212, 3730, 4450, 277, 3720, 2594, 543, 596, 2010, 0.8362, 0.7511, 0.3769, 0.4211, 0.472, 0.587, 0.5252, 0.531, 0.8909, 0.5011, 0.5602, 0.355, 0.473, 0.37, 0.45, 0.3065, 0.432, 0.37, 0.6068, 0.3362, 0.452, 0.452, 0.33, 0.2687, 0.295, 0.2665, 0.3723, 0.3002, 0.3925, 0.4228, 0.3715, 76.1, 74.91, 72.54, 71.65, 69.87, 73.34, 73.1, 72.37, 78.14, 73.91, 74.7, 71.85, 72.55, 68.95, 73.92, 71.54, 71.08, 70.66, 73.27, 71.29, 72.92, 71.73, 71.2, 65.96, 65.49, 64.37, 70.07, 67.47, 66.03, 70.17, 67.41, 48001, 18601, 40036, 23197, 23660, 44404, 22832, 30888, 40549, 63909, 33115, 29007, 21877, 19946, 50909, 48450, 36287, 34917, 66510, 22556, 5524, 16122, 35297, 14897, 18117, 293, 28734, 13637, 4682, 4895, 21340), .Dim = c(31L, 5L), .Dimnames = list(c("北京", "天津", "河北", "山西", "内蒙古", "辽宁", "吉林", "黑龙江", "上海", "江苏", "浙江", "安徽", "福建", "江西", "山东", "河南", "湖北", "湖南", "广东", "广西", "海南", "重庆", "四川", "贵州", "云南", "西藏", "陕西", "甘肃", "青海", "宁夏", "新疆"), c("增长率", "总人口", "城镇人口比重", "预期寿命", "高学历人数")), adj = structure(c(-0.5, -0.5, 0.5, 0.5, 1.3, -0.4, -0.6, -0.5, -0.5, -0.6, -0.6, 0.6, 0.5, 0.5, 0.5, 0.5, 0.5, 1.8, 0.5, 1.7, 0.5, -0.6, -0.6, 0.5, 0.5, 0.5, 1.7, -0.7, 0.5, 0.5, 0.5, 0.5, 0.5, -0.5, 0, -0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, -0.3, 2.1, -0.3, -0.5, -0.5, -1.6, 0.5, -0.7, 1.3, -0.7, 0.5, 0.5, 2.4, -0.3, -0.6, 0.5, 0.5, -0.8, -0.7, -0.8), .Dim = c(31L, 2L), .Dimnames = list(c("北京", "天津", "河北", "山西", "内蒙古", "辽宁", "吉林", "黑龙江", "上海", "江苏", "浙江", "安徽", "福建", "江西", "山东", "河南", "湖北", "湖南", "广东", "广西", "海南", "重庆", "四川", "贵州", "云南", "西藏", "陕西", "甘肃", "青海", "宁夏", "新疆"), c("horizontal", "vertical" )))) library(KernSmooth) x = ChinaPop x[, 1:2] = apply(x[, 1:2], 2, function(z) 20 * (z - min(z)) / (max(z) - min(z)) + 5) symbols(x[, 4], x[, 5], thermometers = x[, 1:3], fg = "gray40", inches = 0.5, xlab = "\u4EBA\u5747\u9884\u671F\u5BFF\u547D", ylab = "\u9AD8\u5B66\u5386\u8005\u4EBA\u6570" ) est = bkde2D(x[, 4:5], apply(x[, 4:5], 2, dpik)) contour(est$x1, est$x2, est$fhat, add = TRUE, lty = "12") for (i in 1:nrow(x)) { text(x[i, 4], x[i, 5], rownames(x)[i], cex = 0.75, adj = attr(x, "adj")[i, ] ) } rug(x[, 4], 0.02, side = 3, col = "gray40") rug(x[, 5], 0.02, side = 4, col = "gray40") boxplot(x[, 4], horizontal = TRUE, pars = list( boxwex = 7000, staplewex = 0.8, outwex = 0.8 ), at = -6000, add = TRUE, notch = TRUE, col = "skyblue", xaxt = "n" ) boxplot(x[, 5], at = 63, pars = list( boxwex = 1.4, staplewex = 0.8, outwex = 0.8 ), add = TRUE, notch = TRUE, col = "skyblue", yaxt = "n" ) text(67, 60000, "2005", cex = 3.5, col = "gray")
ResamplingSptCVCstf = R6Class("ResamplingSptCVCstf", inherit = mlr3::Resampling, public = list( initialize = function(id = "sptcv_cstf") { ps = ParamSet$new(params = list( ParamInt$new("folds", lower = 1L, default = 10L, tags = "required"), ParamUty$new("space_var", custom_check = function(x) check_character(x, len = 1)), ParamUty$new("time_var", custom_check = function(x) check_character(x, len = 1)), ParamUty$new("class", custom_check = function(x) check_character(x, len = 1)) )) ps$values = list(folds = 10L) super$initialize( id = id, param_set = ps, man = "mlr3spatiotempcv::mlr_resamplings_sptcv_cstf" ) }, instantiate = function(task) { pv = self$param_set$values mlr3::assert_task(task) checkmate::assert_multi_class(task, c("TaskClassifST", "TaskRegrST")) checkmate::assert_subset(pv$time_var, choices = task$feature_names, empty.ok = TRUE) checkmate::assert_subset(pv$space_var, choices = task$feature_names, empty.ok = TRUE) groups = task$groups if (!is.null(groups)) { stopf("Grouping is not supported for spatial resampling methods") } private$.sample(task) self$task_hash = task$hash self$task_nrow = task$nrow invisible(self) } ), active = list( iters = function() { self$param_set$values$folds } ), private = list( .sample = function(task) { pv = self$param_set$values sptfolds = sample_cstf( self = self, task, pv$space_var, pv$time_var, pv$class, pv$folds, task$data() ) for (i in 1:pv$folds) { if (!is.null(pv$time_var) & !is.null(sptfolds$space_var)) { self$instance$test[[i]] = which(sptfolds$data[[sptfolds$space_var]] %in% sptfolds$spacefolds[[i]] & sptfolds$data[[pv$time_var]] %in% sptfolds$timefolds[[i]]) self$instance$train[[i]] = which(!sptfolds$data[[sptfolds$space_var]] %in% sptfolds$spacefolds[[i]] & !sptfolds$data[[pv$time_var]] %in% sptfolds$timefolds[[i]]) } else if (is.null(pv$time_var) & !is.null(sptfolds$space_var)) { self$instance$test[[i]] = which(sptfolds$data[[sptfolds$space_var]] %in% sptfolds$spacefolds[[i]]) self$instance$train[[i]] = which(!sptfolds$data[[sptfolds$space_var]] %in% sptfolds$spacefolds[[i]]) } else if (!is.null(pv$time_var) & is.null(sptfolds$space_var)) { self$instance$test[[i]] = which(sptfolds$data[[pv$time_var]] %in% sptfolds$timefolds[[i]]) self$instance$train[[i]] = which(!sptfolds$data[[pv$time_var]] %in% sptfolds$timefolds[[i]]) } } invisible(self) }, .get_train = function(i) { self$instance$train[[i]] }, .get_test = function(i) { self$instance$test[[i]] } ) )
pmml.gbm <- function(model, model_name = "GBM_Model", app_name = "SoftwareAG PMML Generator", description = "Generalized Boosted Tree Model", copyright = NULL, model_version = NULL, transforms = NULL, missing_value_replacement = NULL, ...) { if (!inherits(model, "gbm")) { stop("Not a legitimate gbm object") } requireNamespace("gbm", quietly = TRUE) dist <- model$distribution$name field <- NULL var.names0 <- c(model$response.name, model$var.names) var.names0 <- gsub("as\\.factor\\(", "", var.names0) var.names <- gsub("\\)", "", var.names0) field$name <- var.names number.of.fields <- length(field$name) target <- model$response.name field$class <- c(0, model$var.type) field$class[field$class > 0] <- "factor" if (model$num.classes > 1) field$class[1] <- "factor" field$class[field$class == 0] <- "numeric" names(field$class) <- var.names levelvector <- which(vapply(model$var.levels, function(x) { is.null(attr(x, "names")) }, FUN.VALUE = 0) == 1) j <- 1 for (i in 1:number.of.fields) { if (field$name[i] == model$response.name) { field$levels[[field$name[i]]] <- model$classes } else { if (field$class[[field$name[i]]] == "factor") { field$levels[[field$name[i]]] <- model$var.levels[[levelvector[j]]] j <- j + 1 } } } numtrees <- model$n.trees numcategories <- model$num.classes pmml <- .pmmlRootNode() pmml <- append.XMLNode(pmml, .pmmlHeader( description, copyright, model_version, app_name )) pmml <- append.XMLNode(pmml, .pmmlDataDictionary(field, transformed = transforms)) if (dist == "multinomial") { mmodel <- xmlNode("MiningModel", attrs = c(modelName = model_name, functionName = "classification")) } else { mmodel <- xmlNode("MiningModel", attrs = c(modelName = model_name, functionName = "regression")) } mmodel <- append.XMLNode(mmodel, .pmmlMiningSchema(field, target, transforms, missing_value_replacement)) output <- .pmmlOutput(field, target) if (dist == "bernoulli") { responseNode <- xmlNode("OutputField", attrs = c( name = "BernoulliResponsePrediction", feature = "transformedValue", dataType = "double" )) divideNode <- xmlNode("Apply", attrs = c("function" = "/")) multiplyNode <- xmlNode("Apply", attrs = c("function" = "*")) plusNode <- xmlNode("Apply", attrs = c("function" = "+")) expNode <- xmlNode("Apply", attrs = c("function" = "exp")) minusNode <- xmlNode("Apply", attrs = c("function" = "-")) fieldNode <- xmlNode("FieldRef", attrs = c(field = paste("Predicted_", target, sep = ""))) initNode <- xmlNode("Constant", model$initF) one1Node <- xmlNode("Constant", 1) one2Node <- xmlNode("Constant", 1) minus1Node <- xmlNode("Constant", -1) multiplyNode <- append.XMLNode(multiplyNode, minus1Node) multiplyNode <- append.XMLNode(multiplyNode, xmlNode("FieldRef", attrs = c(field = "BernoulliLinkPrediction"))) expNode <- append.XMLNode(expNode, multiplyNode) plusNode <- append.XMLNode(plusNode, one1Node) plusNode <- append.XMLNode(plusNode, expNode) divideNode <- append.XMLNode(divideNode, one2Node) divideNode <- append.XMLNode(divideNode, plusNode) responseNode <- append.XMLNode(responseNode, divideNode) linkNode <- xmlNode("OutputField", attrs = c( name = "BernoulliLinkPrediction", feature = "transformedValue", dataType = "double" )) addNode <- xmlNode("Apply", attrs = c("function" = "+")) addNode <- append.XMLNode(addNode, fieldNode) addNode <- append.XMLNode(addNode, initNode) linkNode <- append.XMLNode(linkNode, addNode) output <- append.XMLNode(output, linkNode) output <- append.XMLNode(output, responseNode) } if (dist == "multinomial") { for (j in seq_along(field$levels[[target]])) { output.fields <- xmlNode("OutputField", attrs = c( name = paste("link_", field$levels[[target]][j], sep = "" ), optype = "continuous", dataType = "double", feature = "transformedValue", segmentId = numtrees * j )) fieldRefNode <- xmlNode("FieldRef", attrs = c(field = paste("UpdatedPredictedValue", j, numtrees, sep = "" ))) output.fields <- append.XMLNode(output.fields, fieldRefNode) output <- append.XMLNode(output, output.fields) } } if (dist == "gaussian") { responseNode <- xmlNode("OutputField", attrs = c( name = "GaussianPrediction", feature = "transformedValue", dataType = "double" )) applyNode <- xmlNode("Apply", attrs = c("function" = "+")) fieldNode <- xmlNode("FieldRef", attrs = c(field = paste("Predicted_", target, sep = ""))) initNode <- xmlNode("Constant", model$initF) applyNode <- append.XMLNode(applyNode, fieldNode) applyNode <- append.XMLNode(applyNode, initNode) responseNode <- append.XMLNode(responseNode, applyNode) output <- append.XMLNode(output, responseNode) } mmodel <- append.XMLNode(mmodel, output) mmodel <- .makeTransforms(mmodel, field, number.of.fields, transforms, "LocalTransformations") if (dist == "multinomial") { segmentation <- xmlNode("Segmentation", attrs = c(multipleModelMethod = "modelChain")) for (i in 1:numcategories) { segments <- lapply(1:numtrees, function(x) { .makeSegments(x, model, model_name, field, target, missing_value_replacement, i) }) segmentation <- append.XMLNode(segmentation, segments) } } else { segmentation <- xmlNode("Segmentation", attrs = c(multipleModelMethod = "sum")) segments <- lapply(1:numtrees, function(x) { .makeSegments(x, model, model_name, field, target, missing_value_replacement, 1) }) segmentation <- append.XMLNode(segmentation, segments) } if (dist == "multinomial") { regModel <- .makeRegressionModel(field, target, numcategories, numtrees, model_name) segmentation <- append.XMLNode(segmentation, regModel) } mmodel <- append.XMLNode(mmodel, segmentation) pmml <- append.XMLNode(pmml, mmodel) return(pmml) } .makeTransforms <- function(pmodel, field, number.of.fields, transforms, name) { ltNode <- xmlNode(name) interact <- FALSE for (fld in 1:number.of.fields) { if (length(grep(":", field$name[fld])) == 1) { interact <- TRUE drvnode <- xmlNode("DerivedField", attrs = c( name = field$name[fld], optype = "continuous", dataType = "double" )) applyNode <- xmlNode("Apply", attrs = c("function" = "*")) for (fac in 1:length(strsplit(field$name[fld], ":")[[1]])) { fldNode <- xmlNode("FieldRef", attrs = c(field = strsplit(field$name[fld], ":")[[1]][fac])) if (length(grep("as\\.factor\\(", fldNode)) == 1) { fldNode <- gsub("as.factor\\((\\w*)\\)", "\\1", fldNode, perl = TRUE) } applyNode <- append.XMLNode(applyNode, fldNode) } drvnode <- append.XMLNode(drvnode, applyNode) } if (interact) { ltNode <- append.XMLNode(ltNode, drvnode) } } if (interact && is.null(transforms)) { pmodel <- append.XMLNode(pmodel, ltNode) } if (interact && !is.null(transforms)) { ltNode <- .pmmlLocalTransformations(field, transforms, ltNode) pmodel <- append.XMLNode(pmodel, ltNode) } if (!interact && !is.null(transforms)) { pmodel <- append.XMLNode(pmodel, .pmmlLocalTransformations(field, transforms, ltNode)) } return(pmodel) } .makeRegressionModel <- function(field, target, numcat, nt, model_name) { segment <- xmlNode("Segment", attrs = c(id = numcat * nt + 1)) tru <- xmlNode("True") segment <- append.XMLNode(segment, tru) regModel <- xmlNode("RegressionModel", attrs = c(modelName = model_name, functionName = "classification", normalizationMethod = "softmax") ) miningNode <- xmlNode("MiningSchema") for (i in 1:numcat) { mfNode <- xmlNode("MiningField", attrs = c(name = paste("UpdatedPredictedValue", i, nt, sep = ""))) miningNode <- append.XMLNode(miningNode, mfNode) } regModel <- append.XMLNode(regModel, miningNode) output <- .pmmlOutput(field, target) regModel <- append.XMLNode(regModel, output) for (i in 1:numcat) { tableNode <- xmlNode("RegressionTable", attrs = c( intercept = 0.0, targetCategory = field$levels[[target]][i] )) predictorNode <- xmlNode("NumericPredictor", attrs = c( name = paste("UpdatedPredictedValue", i, nt, sep = ""), coefficient = 1.0 )) tableNode <- append.XMLNode(tableNode, predictorNode) regModel <- append.XMLNode(regModel, tableNode) } segment <- append.XMLNode(segment, regModel) return(segment) } .makeSegments <- function(b, model, model_name, field, target, missing_value_replacement = NULL, ncat) { message(paste("Now converting tree ", b, " to PMML, for category nodeList <- list() if (model$distribution$name == "multinomial") { ntrees <- model$n.trees Ncat <- model$num.classes tree <- cbind( model$trees[[ncat + Ncat * (b - 1)]][[3]] + 1, model$trees[[ncat + Ncat * (b - 1)]][[4]] + 1, model$trees[[ncat + Ncat * (b - 1)]][[1]] + 2, model$trees[[ncat + Ncat * (b - 1)]][[2]], model$trees[[ncat + Ncat * (b - 1)]][[8]], model$trees[[ncat + Ncat * (b - 1)]][[5]] + 1 ) rowId <- max(c( model$trees[[ncat + Ncat * (b - 1)]][[3]] + 1, model$trees[[ncat + Ncat * (b - 1)]][[4]] + 1, model$trees[[ncat + Ncat * (b - 1)]][[5]] + 1 )) } else { tree <- cbind( model$trees[[b]][[3]] + 1, model$trees[[b]][[4]] + 1, model$trees[[b]][[1]] + 2, model$trees[[b]][[2]], model$trees[[b]][[8]], model$trees[[b]][[5]] + 1 ) rowId <- max(c( model$trees[[b]][[3]] + 1, model$trees[[b]][[4]] + 1, model$trees[[b]][[5]] + 1 )) } nodeList <- lapply(1:rowId, function(x) { .makeNodes(x, model, tree, field) }) nodeFi <- .makeTrees(nodeList, tree, rowId) tree.model <- xmlNode("TreeModel", attrs = c( modelName = model_name, functionName = "regression", algorithmName = "gbm", splitCharacteristic = "multiSplit" ) ) MSNode <- .pmmlMiningSchema(field, target, missing_value_replacement = missing_value_replacement) outputNode <- xmlNode("Output") if (model$distribution$name == "multinomial") { if (b == 1) { tree.model <- append.XMLNode(tree.model, MSNode) outputfield1 <- xmlNode("OutputField", attrs = c( name = paste("UpdatedPredictedValue", ncat, b, sep = ""), optype = "continuous", dataType = "double", feature = "predictedValue" ) ) outputNode <- append.XMLNode(outputNode, outputfield1) } if (b != 1) { miningNode <- xmlNode("MiningField", attrs = c( name = paste("UpdatedPredictedValue", ncat, b - 1, sep = ""), optype = "continuous" )) MSNode <- append.XMLNode(MSNode, miningNode) tree.model <- append.XMLNode(tree.model, MSNode) outputfield1 <- xmlNode("OutputField", attrs = c( name = paste("TreePredictedValue", ncat, b, sep = ""), optype = "continuous", dataType = "double", feature = "predictedValue" ) ) outputNode <- append.XMLNode(outputNode, outputfield1) outputField2 <- xmlNode("OutputField", attrs = c( name = paste("UpdatedPredictedValue", ncat, b, sep = ""), optype = "continuous", dataType = "double", feature = "transformedValue" ) ) applyNode <- xmlNode("Apply", attrs = c("function" = "+")) previousFieldNode <- xmlNode("FieldRef", attrs = c(field = paste("UpdatedPredictedValue", ncat, b - 1, sep = ""))) newFieldNode <- xmlNode("FieldRef", attrs = c(field = paste("TreePredictedValue", ncat, b, sep = ""))) applyNode <- append.XMLNode(applyNode, previousFieldNode) applyNode <- append.XMLNode(applyNode, newFieldNode) outputField2 <- append.XMLNode(outputField2, applyNode) outputNode <- append.XMLNode(outputNode, outputField2) } tree.model <- append.XMLNode(tree.model, outputNode) segment <- xmlNode("Segment", attrs = c(id = (ncat - 1) * ntrees + b)) tru <- xmlNode("True") segment <- append.XMLNode(segment, tru) } else { tree.model <- append.XMLNode(tree.model, MSNode) segment <- xmlNode("Segment", attrs = c(id = b)) tru <- xmlNode("True") segment <- append.XMLNode(segment, tru) } tree.model <- append.XMLNode(tree.model, nodeFi) segment <- append.XMLNode(segment, tree.model) return(segment) } .makeTrees <- function(nodeLi, tre, rId) { while (rId != 0) { if (tre[rId, 1] != 0) { nodeR <- nodeLi[[tre[rId, 2]]] nodeL <- nodeLi[[tre[rId, 1]]] nodeM <- nodeLi[[tre[rId, 6]]] nodeT <- nodeLi[[rId]] nodeT <- append.XMLNode(nodeT, nodeL) nodeT <- append.XMLNode(nodeT, nodeR) nodeT <- append.XMLNode(nodeT, nodeM) nodeLi[[rId]] <- nodeT } rId <- rId - 1 } return(nodeLi[[1]]) } .makeNodes <- function(n, mod, tinf, fieldInfo) { if (n == 1) { return(append.XMLNode(xmlNode("Node", attrs = c(id = 1)), xmlNode("True"))) } else { side <- 6 if (n %in% tinf[, 1]) { side <- 1 } if (n %in% tinf[, 2]) { side <- 2 } score <- NULL score <- tinf[n, 5] if (is.null(score)) { rfNode <- xmlNode("Node", attrs = c(id = n)) } else { rfNode <- xmlNode("Node", attrs = c(id = n, score = score)) } rowid <- which(tinf[, side] == n) fname <- fieldInfo$name[tinf[rowid, 3]] fname0 <- names(attr(mod$Terms, "dataClasses"))[tinf[rowid, 3]] logical <- FALSE numeric <- FALSE fieldClass <- fieldInfo$class[[fname]] if (fieldClass == "numeric") { numeric <- TRUE } if (fieldClass == "logical") { logical <- TRUE } if (numeric) { if (side == 1) { splitNode <- xmlNode("SimplePredicate", attrs = c( field = fname, operator = "lessThan", value = tinf[rowid, 4] )) } else if (side == 2) { splitNode <- xmlNode("SimplePredicate", attrs = c( field = fname, operator = "greaterOrEqual", value = tinf[rowid, 4] )) } else { splitNode <- xmlNode("SimplePredicate", attrs = c(field = fname, operator = "isMissing")) } } else if (logical) { if (side == 6) { splitNode <- xmlNode("SimplePredicate", attrs = c(field = fname, operator = "isMissing")) } else { bool <- ifelse(tinf[rowid, 4] <= 0.5, FALSE, TRUE) splitNode <- xmlNode("SimplePredicate", attrs = c( field = fname, operator = "equal", value = bool )) } } else { if (side == 6) { splitNode <- xmlNode("SimplePredicate", attrs = c(field = fname, operator = "isMissing")) } else { splitid <- mod$c.splits[[as.integer(tinf[rowid, 4]) + 1]] binary <- 0.5 - splitid / 2.0 ssp <- xmlNode("SimpleSetPredicate", attrs = c(field = fname, booleanOperator = "isIn")) num1 <- 0 scat <- NULL holder <- array(0, dim = length(fieldInfo$levels[fname][[1]])) holder0 <- array(0, dim = c(1, mod$forest$ncat[fname][[1]])) for (k in 1:length(binary)) { holder[k] <- binary[k] } options(useFancyQuotes = FALSE) for (k in 1:length(fieldInfo$levels[[fname]])) { if (side == 1) { if (holder[k] == 1) { num1 <- num1 + 1 catname <- fieldInfo$levels[[fname]][k] catname0 <- mod$forest$xlevels[fname][[1]][k] scat <- paste(scat, " ", dQuote(catname)) } } else { if (holder[k] == 0) { num1 <- num1 + 1 catname <- fieldInfo$levels[[fname]][k] scat <- paste(scat, " ", dQuote(catname)) } } } scat <- gsub("^[ ]*", "", scat) ap <- xmlNode("Array", attrs = c(n = num1, type = "string"), scat) ssp <- append.XMLNode(ssp, ap) splitNode <- ssp } } rfNode <- append.XMLNode(rfNode, splitNode) } return(rfNode) }
exactprob1<-function(n.I,lowerbounds,p,k,K){ m=c(n.I[1],diff(n.I)) plo=rep(0,k) phi=NULL c.mat=matrix(0,ncol=k,nrow=n.I[k]+1) c.mat[,1]=stats::dbinom(0:n.I[k],m[1],p) plo[1]=sum(c.mat[(0:n.I[k])<=lowerbounds[1],1]) for(i in 2:k){ no.stop=((lowerbounds[(i-1)]+1):n.I[(i-1)]) no.stop.mat=matrix(no.stop,byrow=T,nrow=n.I[k]+1,ncol=length(no.stop)) succ.mat=matrix(0:n.I[k],byrow=F,ncol=length(no.stop),nrow=n.I[k]+1) bin.mat=matrix(stats::dbinom(succ.mat-no.stop.mat,m[i],p),byrow=F,ncol=length(no.stop),nrow=n.I[k]+1) c.mat[,i]=bin.mat%*%c.mat[no.stop+1,(i-1)] plo[i]=sum(c.mat[(0:n.I[k])<=lowerbounds[i],i]) if(i==K){ plo[i]=sum(c.mat[(0:n.I[k])<lowerbounds[i],i]) phi=sum(c.mat[(0:n.I[k])>=lowerbounds[i],i]) } } return(list(plo=plo,phi=phi)) }
emergencystart <- function(x){ nGroups <- nrow(x@sample@groups) if (x@model == 'varcov' && x@types[['y']] == 'ggm' && !is.null(x@baseline_saturated$saturated) && nGroups == 1){ mats <- formModelMatrices(x) nGroups <- nrow(x@sample@groups) g <- 1 satCovs <- spectralshift(x@baseline_saturated$saturated@modelmatrices[[g]]$sigma) net <- mats[[g]]$omega != 0 zeroes <- which(net & diag(ncol(net)) != 1, arr.ind = TRUE) if (nrow(zeroes) > 0){ suppressWarnings(glas <- glasso::glasso(as.matrix(satCovs), 0, zero = zeroes)) omega <- -1*cov2cor(glas$wi) diag(omega) <- 0 } else { omega <- qgraph::wi2net(solve(as.matrix(satCovs))) } for (i in which(x@parameters$matrix == "omega" & x@parameters$group_id == g & !x@parameters$fixed)){ x@parameters$est[i] <- omega[x@parameters$row[i], x@parameters$col[i]] } if (!x@sample@corinput){ toR <- diag(1/sqrt(diag(solve_symmetric(diag(nrow(omega)) - omega)))) toCov <- diag(sqrt(diag(satCovs))) delta <- toCov %*% toR for (i in which(x@parameters$matrix == "delta" & x@parameters$group_id == g & !x@parameters$fixed)){ x@parameters$est[i] <- delta[x@parameters$row[i], x@parameters$col[i]] } } } else { allMats <- x@matrices[!grepl("(mu)|(nu)",x@matrices$name),] for (mat in seq_len(nrow(allMats))){ if (allMats$posdef[mat]){ x@parameters$est[x@parameters$matrix == allMats$name[mat] & !x@parameters$fixed] <- ifelse(x@parameters$row[x@parameters$matrix == allMats$name[mat] & !x@parameters$fixed] == x@parameters$col[x@parameters$matrix == allMats$name[mat] & !x@parameters$fixed], 1, 0) } else { x@parameters$est[x@parameters$matrix == allMats$name[mat]& !x@parameters$fixed] <- (x@parameters$est[x@parameters$matrix == allMats$name[mat]& !x@parameters$fixed] != 0) * 1e-7 * sign(x@parameters$est[x@parameters$matrix == allMats$name[mat]& !x@parameters$fixed]) } } } return(x) }
"df2latex" <- function(x,digits=2,rowlabels=TRUE,apa=TRUE,short.names=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="df2latex",label="default",char=FALSE,stars=FALSE,silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0,abbrev=NULL,long=FALSE) { if(is.null(abbrev)) abbrev<- digits + 3 nvar <- dim(x)[2] rname<- rownames(x) tempx <- x comment <- paste("%", match.call()) if(long) { header <- paste0("\\begin{center} \\begin{",font.size,"} \\begin{longtable}") header <- c(header,"{l",rep("r",(nvar)),"}\n") header <- c(header,paste0(" \\caption{",caption,"} \\endfirsthead \\multicolumn{",nvar+1,"}{c} {{\\bfseries \\tablename\\ \\thetable{} -- continued from previous page}} \\\\ \\endhead \\hline \\multicolumn{",nvar+1,"}{|c|}{{Continued on next page}} \\\\ \\hline \\endfoot \\hline \\hline \\endlastfoot ")) footer <- paste0("\\end{longtable} \\end{",font.size,"} \\end{center}") } else { header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") if(stars) {if(rowlabels) { header <- c(header,"{l",rep("S",(nvar)),"}\n")} else {header <- c(header,"{",rep("S",(nvar+1)),"}\n")} } else { if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n")} } if(apa) {header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline ")} else {footer <- NULL} if (stars){ footer <- paste(" \\hline \n \\multicolumn{7}{l}{\\scriptsize{\\emph{Note: }\\textsuperscript{***}$p<.001$; \\textsuperscript{**}$p<.01$; \\textsuperscript{*}$p<.05$",".}}" ,sep = "") }else{ footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) } if(big) all.x <- x if(!char) {if(!is.null(digits)) {if(is.numeric(x) ) {x <- round(x,digits=digits)} else {for(i in 1:ncol(x)) {if (is.numeric(x[,i])) x[,i] <- round(x[,i],2)} } if(cut > 0) x[abs(x) < cut] <- NA } } cname <- colnames(x) if (short.names) cname <- abbreviate(cname,minlength=abbrev) names1 <- paste0("{",cname[1:(nvar-1)], "} & ") lastname <- paste0("{",cname[nvar],"}\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x,drop0trailing=FALSE) if(big > 0) { for(i in 1:ncol(x)) {if (is.numeric(all.x[,i])) x[abs(all.x[,i] ) > big,i] <- paste0("\\bf{",x[abs(all.x[,i]) > big,i],"}") }} } else {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } else {if(big > 0) { x[!is.na(abs(as.numeric(all.x))>big) & abs(as.numeric(all.x))>big ] <- paste0("\\bf{", x[!is.na(abs(as.numeric(all.x))>big) & abs(as.numeric(all.x))>big ],"}") } } value <- apply(x,1,paste,collapse=" & ") if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) if(!silent) {cat(comment,"\n") cat(header) cat(allnames) cat(values) cat(footer) } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } cor2latex <- function (x, use = "pairwise", method="pearson", adjust="holm", stars = FALSE, digits=2, rowlabels = TRUE, lower = TRUE, apa = TRUE, short.names = TRUE, font.size = "scriptsize", heading = "A correlation table from the psych package in R.", caption = "cor2latex", label = "default",silent=FALSE,file=NULL,append=FALSE,cut=0,big=.0) { if(stars) heading <- paste(heading, "Adjust for multiple tests = ",adjust ) if (!is.na(class(x)[2]) & class(x)[2]=="corr.test") { r <- x$r p <- x$p} else { if (nrow(x) > ncol(x)) { x <- psych::corr.test(x, use=use,method=method,adjust=adjust) r <- x$r p <- x$p } else { r <- x p <- NULL } } r <- round(r, digits) r <- format(r, nsmall = digits,drop0trailing=FALSE) if (lower) { r[upper.tri(r)] <- "~" } else { r[lower.tri(r)] <- "~" } if(isTRUE(stars && is.null(p))) stop("To print significance levels, x must be be either a data frame of observations or a correlation matrix created with the corr.test function of the package psych. If you are not interested in displaying signicance level set stars = FALSE") mystars <- ifelse(p < .001, "{***}", ifelse(p < .01, "{**}", ifelse(p < .05, "{*}", ""))) mystars <- t(mystars) if(stars) { R <- matrix(paste(r,mystars,sep=""),ncol=ncol(r))} else {R <- r} diag(R) <- paste(diag(r), " ", sep="") rownames(R) <- colnames(r) colnames(R) <- colnames(r) if (lower) { R[upper.tri(R, diag = FALSE)] <- "" } else { R[lower.tri(R, diag = FALSE)] <- "" } if(stars) {char<- TRUE} else {char <- FALSE} return(df2latex(R, digits = digits, rowlabels = rowlabels, apa = apa, short.names = short.names, font.size = font.size, heading = heading, caption = caption, label = label, char=TRUE,stars = stars,silent=silent,file=file,append=append,cut=cut,big=big)) } "fa2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=0,big=.3,alpha=.05,font.size ="scriptsize", heading="A factor analysis table from the psych package in R",caption="fa2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] == "fa.ci") { if(is.null(f$cip)) {px <- f$cis$p} else {px <- f$cip}} else {px <- NULL} x <- unclass(f$loadings) if(!is.null(f$Phi)) {Phi <- f$Phi} else {Phi <- NULL} nfactors <- ncol(x) if(nfactors > 1) {if(is.null(Phi)) {h2 <- rowSums(x^2)} else {h2 <- diag(x %*% Phi %*% t(x)) }} else {h2 <-x^2} u2 <- 1- h2 vtotal <- sum(h2 + u2) if(cut > 0) x[abs(x) < cut] <- NA if(!is.null(f$complexity)) {x <- data.frame(x,h2=h2,u2=u2,com=f$complexity) } else {x <- data.frame(x,h2=h2,u2=u2)} colnames(x)[which(colnames(x)=='h2')] <- '$h^2$' colnames(x)[which(colnames(x)=='u2')] <- '$u^2$' nvar <- dim(x)[2] comment <- paste("% Called in the psych package ", match.call()) header <- paste("\\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{",font.size,"} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{",font.size,"} \\end{center} \\label{",label,"} \\end{table} ",sep="" ) x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} fx <- format(x,drop0trailing=FALSE) {if(!is.null(px) && (cut == 0)) { temp <- fx[1:nfactors] temp[px < alpha] <- paste("\\bf{",temp[px < alpha],"}",sep="") fx[1:nfactors] <- temp } if(big > 0) {temp <- fx[1:nfactors] x <- x[1:nfactors] temp[!is.na(x) & (abs(x) > big)] <- paste("\\bf{",temp[!is.na(x) & (abs(x) > big)],"}",sep="") fx[1:nfactors] <- temp } value <- apply(fx,1,paste,collapse=" & ") value <- gsub("NA", " ", value, fixed = TRUE) if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") if(!silent) { cat(comment,"\n") cat(header) cat(allnames) cat(values) } x <- f$loadings nvar <- nrow(x) if(is.null(Phi)) {if(nfactors > 1) {vx <- colSums(x^2) } else { vx <- diag(t(x) %*% x) vx <- vx*nvar/vtotal }} else {vx <- diag(Phi %*% t(x) %*% x) vx <- vx*nvar/vtotal } vx <- round(vx,digits) loads <- c("\\hline \\cr SS loadings &",paste(vx," & ",sep=""),"\\cr \n") if(!silent) { cat(loads)} summ <- NULL if(cumvar) { provar <- round(vx/nvar,digits) summ <- c("Proportion Var &" ,paste( provar, " & ",sep=""),"\\cr \n") if (nfactors > 1) {cumvar <- round(cumsum(vx/nvar),digits) cumfavar <- round(cumsum(vx/sum(vx)),digits=digits) summ <- c(summ, "Cumulative Var & ",paste( cumvar," & ", sep=""),"\\cr \n", "Cum. factor Var & ",paste(round(cumsum(vx/sum(vx)),digits=digits)," & ",sep=""),"\\cr \n") } if(!silent) {cat(summ) } } loads <- c(loads,summ) if(!is.null(Phi)) { summ <- c("\\cr \\hline \\cr \n") if(!silent) {cat(summ) } Phi <- round(Phi,digits) phi <- format(Phi,nsmall=digits) phi <-apply(phi,1,paste,collapse=" & ") phi <-paste(colnames(x)," &",phi) phi <- paste(phi, "\\cr", "\n") loads <- c(loads,summ,phi) if(!silent) { cat(phi)} } if(!silent) { cat(footer)} } values <- c(values,loads) result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } "irt2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,font.size ="scriptsize", heading="An IRT factor analysis table from R",caption="fa2latex" ,label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] != "polyinfo" ) {nf <- length(f$plot$sumInfo) } else {nf <- length(f$sumInfo) } for(i in (1:nf)) { if(class(f)[2] != "polyinfo" ) {x <- f$plot$sumInfo[[i]]} else {x <- f$sumInfo[[i]] } if(nf>1) { rowmax <- apply(x,1,max, na.rm=TRUE) rowmax <- which(rowmax <.001,arr.ind=TRUE) if(!is.null(rowmax)) x <- x[-rowmax,]} nvar <- ncol(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption,"} \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading," for factor " , i, " }", "\\cr \\hline \\cr", "\n & \\multicolumn{7}{c}{Item information at $\\theta$} \\cr \\cline{2-8} ") if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Item & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) value <- apply(x,1,paste,collapse=" & ") if(rowlabels) value <- paste(sanitize.latex(names(value))," & ",value) values <- paste(value, "\\cr", "\n") if(class(f)[2] != "polyinfo" ) {test.info <- colSums(f$plot$sumInfo[[i]])} else {test.info <- colSums(f$sumInfo[[i]])} sem <- sqrt(1/test.info) reliab <- 1 - 1/test.info summary <- rbind(test.info,sem,reliab) summary <- round(summary,digits) summary <- format(summary,nsmall=digits) summary <- cbind(c("Test.info","SEM","Reliability"),summary) summary <- apply(summary,1,paste,collapse=" & ") summary <- paste(summary,"\\cr \n") if(!silent) { cat(comment,"\n") cat(header) cat(allnames) cat(values) cat("\\hline \n & \\multicolumn{7}{c}{Summary statistics at $\\theta$} \\cr \\cline{2-8}") cat(summary) cat(footer) } } result <- c(header,allnames,values,summary,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } "sanitize.latex" <- function(astring) { result <- astring result <- gsub("&", "\\&", result, fixed = TRUE) result <- gsub("_", "\\_", result, fixed = TRUE) result <- gsub("%", "\\%", result, fixed = TRUE) return(result) } "omega2latex" <- function(f,digits=2,rowlabels=TRUE,apa=TRUE,short.names=FALSE,cumvar=FALSE,cut=.2,font.size ="scriptsize", heading="An omega analysis table from the psych package in R",caption="omega2latex",label="default",silent=FALSE,file=NULL,append=FALSE) { if(class(f)[2] == "omega" ) f$loadings <- f$schmid$sl x <- unclass(f$loadings) nfactors <- ncol(x) h2 <- rowSums(x^2) u2 <- 1- h2 vtotal <- sum(h2 + u2) nvar <- dim(x)[2] comment <- paste("% Called in the psych package ", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[htpb]", "\\caption{",caption," with cut = ",cut,"\n $\\omega_h = ",round(f$omega_h,digits), "\\;\\;\\;\\alpha (\\lambda_3) = ",round(f$alpha,digits), "\\;\\;\\;\\lambda_6^* = ",round(f$G6,digits),"\\;\\;\\; \\omega_t = ",round(f$omega.tot,digits),"$ } \\begin{center} \\begin{tabular}",sep="") header <- c(header,"{l",rep("r",nvar),"}\n") if(apa) header <- c(header, "\\multicolumn{",nvar,"}{l}{",heading,"}", '\\cr \n \\hline ') if(apa) {footer <- paste(" \\hline ")} footer <- paste(footer," \\end{tabular} \\end{center} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) x[abs(x) < cut] <- NA x <- round(x,digits=digits) cname <- colnames(x) if (short.names) cname <- 1:nvar names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {allnames <- c(" & ",names1,lastname,"\\cr \n")} x <- format(x,drop0trailing=FALSE) value <- apply(x,1,paste,collapse=" & ") value <- gsub("NA", " ", value, fixed = TRUE) if(rowlabels) value <- {paste(sanitize.latex(names(value))," & ",value)} else {paste(" & ",value)} values <- paste(value, "\\cr", "\n") x <- f$loadings nvar <- nrow(x) vx <- colSums(x^2)[1:(ncol(x)-3)] vx <- round(vx,digits) loads <- c("\\hline \\cr SS loadings &",paste(vx," & ",sep=""),"\\cr \n") if(!silent) { cat(comment,"\n") cat(header) cat(allnames) cat(values) cat(loads) cat(footer) } result <- c(header,allnames,values,loads,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) } "ICC2latex" <- function(icc,digits=2,rowlabels=TRUE,apa=TRUE,ci=TRUE, font.size ="scriptsize",big.mark=NULL, drop.na=TRUE, heading="A table from the psych package in R", caption="ICC2latex",label="default",char=FALSE,silent=FALSE,file=NULL,append=FALSE) { if((length(class(icc)) < 2 ) | (class(icc)[2] !="ICC")) icc <- psych::ICC(icc) x <- icc$results nvar <- dim(x)[2] rname<- rownames(x) comment <- paste("%", match.call()) header <- paste("\\begin{",font.size,"} \\begin{table}[[htpb]", "\\caption{",caption,"} \\begin{tabular}",sep="") if(rowlabels) { header <- c(header,"{l",rep("r",(nvar)),"}\n")} else {header <- c(header,"{",rep("r",(nvar+1)),"}\n") } if(apa) {header <- c(header, "\\multicolumn{",5,"}{l}{",heading,"}", '\\cr \n \\hline ') footer <- paste(" \\hline \\cr \\multicolumn{ 5 }{c}{ Number of subjects = ", icc$n.obs, "Number of raters = ",icc$n.judge,"}")} else {footer <- NULL} footer <- paste(footer," \\end{tabular} \\label{",label,"} \\end{table} \\end{",font.size,"} ",sep="" ) x[2:nvar] <- try(round(x[2:nvar],digits=digits)) cname <- colnames(x) if(!ci) nvar <- nvar-2 names1 <- paste(cname[1:(nvar-1)], " & ") lastname <- paste(cname[nvar],"\\cr \n") if(apa) {allnames <- c("Variable & ",names1,lastname," \\hline \n")} else {if(rowlabels) {allnames <- c(" & ",names1,lastname,"\\cr \n")} else { allnames <- c(names1,lastname,"\\cr \n")}} if(!char) {if(is.null(big.mark)) { x <- format(x[1:nvar],drop0trailing=FALSE)} else {x <- prettyNum(x,big.mark=",",drop0trailing=FALSE)} } value <- apply(x,1,paste,collapse=" & ") if(rowlabels) {value <- paste(sanitize.latex(rname)," & ",value)} else {value <- paste(" & ",value)} values <- paste(value, "\\cr", "\n") if(drop.na) values <- gsub("NA"," ",values,fixed=TRUE) if(!silent) { cat(comment,"\n") cat(header) cat(allnames) cat(values) cat(footer) } result <- c(header,allnames,values,footer) if(!is.null(file)) write.table(result,file=file,row.names=FALSE,col.names=FALSE,quote=FALSE,append=append) invisible(result) }
morphomapCore<-function (out.sur = out.sur, inn.sur = inn.sur, num.sect = 61, mech.len, clean_int_out = TRUE, param1 = 0.5, radius.fact = 2.5, npovs = 100, num.points = 500, start = 0.2, end = 0.8, print.progress = TRUE) { ext_raw_sects_2D <- array(NA, dim = c(num.points, 2, num.sect)) inn_raw_sects_2D <- array(NA, dim = c(num.points, 2, num.sect)) ext_raw_sects_3D <- array(NA, dim = c(num.points, 3, num.sect)) inn_raw_sects_3D <- array(NA, dim = c(num.points, 3, num.sect)) sect_poi <- seq(mech.len * start, mech.len * end, length = num.sect) if(print.progress==TRUE){ pb <- txtProgressBar(min=0,max=num.sect-1,initial=0,style=3) step<-0 } for (m in 1:num.sect) { p1 <- c(0, 0, sect_poi[m]) p2 <- c(100, 0, sect_poi[m]) p3 <- c(0, 100, sect_poi[m]) inter_out <- NULL inter_inn <- NULL inter_out <- meshPlaneIntersect(out.sur, p1, p2, p3)[, c(1, 2)] inter_inn <- meshPlaneIntersect(inn.sur, p1, p2, p3)[, c(1, 2)] inters <- inter_inn ordered_out_temp <- morphomapSort(inter_out) ordered_out_temp <- rbind(ordered_out_temp, ordered_out_temp[1, ]) ordered_out <- ordered_out_temp if (clean_int_out == TRUE) { inter_inn <- morphomapFlip(inter_inn, param1 = param1, radius.fact = radius.fact, npovs = npovs) } ordered_inn_temp <- morphomapSort(inter_inn) ordered_inn_temp <- rbind(ordered_inn_temp, ordered_inn_temp[1, ]) ordered_inn <- ordered_inn_temp ev_out <- equidistantCurve(ordered_out, n = num.points, iterations = 1, increment = 0) ev_inn <- equidistantCurve(ordered_inn, n = num.points, iterations = 1, increment = 0) ext_raw_sects_2D[, , m] <- ev_out inn_raw_sects_2D[, , m] <- ev_inn ext_raw_sects_3D[, , m] <- cbind(ev_out, sect_poi[m]) inn_raw_sects_3D[, , m] <- cbind(ev_inn, sect_poi[m]) if(print.progress==TRUE){ setTxtProgressBar(pb,step) step <- step+1 } } if(print.progress==TRUE){ close(pb) } out <- list(`3D_out` = ext_raw_sects_3D, `3D_inn` = inn_raw_sects_3D, `2D_out` = ext_raw_sects_2D, `2D_inn` = inn_raw_sects_2D, mech_length = mech.len, start = start, end = end) return(out) }
smirt <- function( dat, Qmatrix, irtmodel="noncomp", est.b=NULL, est.a=NULL, est.c=NULL, est.d=NULL, est.mu.i=NULL, b.init=NULL, a.init=NULL, c.init=NULL, d.init=NULL, mu.i.init=NULL, Sigma.init=NULL, b.lower=-Inf, b.upper=Inf, a.lower=-Inf, a.upper=Inf, c.lower=-Inf, c.upper=Inf, d.lower=-Inf, d.upper=Inf, theta.k=seq(-6,6,len=20), theta.kDES=NULL, qmcnodes=0, mu.fixed=NULL, variance.fixed=NULL, est.corr=FALSE, max.increment=1, increment.factor=1, numdiff.parm=.0001, maxdevchange=.10, globconv=.001, maxiter=1000, msteps=4, mstepconv=.001) { s1 <- Sys.time() if (is.null(colnames(dat))){ colnames(dat) <- paste0("I", 1:ncol(dat)) } dat0 <- dat <- as.matrix(dat) N <- nrow(dat) res1 <- .smirt.check.inits( a.init, b.init, irtmodel, Qmatrix ) a.init <- res1$a.init b.init <- res1$b.init Q <- Qmatrix if ( is.null( theta.kDES) ){ D <- ncol(Qmatrix) TD <- D } else { D <- ncol(theta.k) TD <- ncol(theta.kDES ) } if ( is.null(colnames(Qmatrix) ) ){ colnames(Qmatrix) <- paste0( "Dim", 1:D ) } if ( is.null(theta.kDES) ){ nodes <- theta.k theta.k <- as.matrix( expand.grid( as.data.frame( matrix( rep(nodes, D), ncol=D ) ) ) ) } theta.k <- as.matrix( theta.k ) Q <- as.matrix(Q) Qmatrix <- as.matrix(Qmatrix) QMC <- FALSE if (qmcnodes>0){ QMC <- TRUE theta.k <- qmc.nodes( snodes=qmcnodes, ndim=D ) colnames(theta.k) <- paste0("Dim",1:D) theta.k0 <- theta.k } TP <- nrow(theta.k) if ( is.null(theta.kDES) ){ theta.kDES <- theta.k } theta.kDES <- as.matrix( theta.kDES ) K <- 1 dat2 <- dat I <- ncol(dat) dat2.resp <- 1 - is.na(dat) dat2[ dat2.resp==0 ] <- 0 dat2.ind0 <- dat2.resp * 1*(dat2==0) dat2.ind1 <- dat2.resp * 1*(dat2==1) dat2.ind <- as.matrix( cbind( dat2.ind0, dat2.ind1 ) ) if ( is.null(b.init)){ if (irtmodel!="comp"){ b <- Qmatrix * matrix( - stats::qlogis( colMeans(dat, na.rm=TRUE ) ),I, D ) } else { b <- - stats::qlogis( colMeans(dat, na.rm=TRUE ) ) } } else { b <- b.init } if ( ! is.null(est.b) & is.null(b.init) ){ b <- 0*b } e1 <- matrix( 1:I, I, ncol(Qmatrix) ) if ( is.null(est.b)){ if (irtmodel!="comp"){ est.b <- Qmatrix*e1 } if (irtmodel=="comp"){ est.b <- 1:I } } if ( is.null(a.init) ){ a <- matrix( 1, I, ncol(Qmatrix) ) a[ Qmatrix==0 ] <- 0 } else { a <- a.init } max.a.increment <- matrix( .4, nrow=1, ncol=ncol(a) ) if ( ! is.null( est.a)){ if ( est.a=="2PL"){ est.a <- matrix(1:I, I, ncol(Qmatrix) ) * ( Qmatrix !=0 ) est.corr <- TRUE } } if ( is.null(est.a)){ est.a <- 0 * Qmatrix*e1 } if ( ! is.null(est.a) & is.null(a.init) ){ a <- 1*a } if ( is.null(c.init)){ c <- rep(0,I) } else { c <- c.init } if ( is.null(d.init)){ d <- rep(1,I) } else { d <- d.init } if ( is.null(mu.i.init)){ mu.i <- rep(.5,I) mu.i[ ( rowSums(Qmatrix>0)==1 ) ] <- 0 } else { mu.i <- mu.i.init } if ( irtmodel=="partcomp"){ if ( is.null(est.mu.i) ){ est.mu.i <- ( 1:I ) * ( rowSums(Qmatrix>0) > 1 ) } } mu <- rep(0,D) if ( is.null(mu.fixed) ){ mu.fixed <- cbind( 1:D, 0 ) } if ( is.null(Sigma.init) ){ Sigma <- .4+.6*diag(1,D) } else { Sigma <- Sigma.init } if ( ! is.null(variance.fixed ) ){ Sigma[ variance.fixed[,1:2,drop=FALSE] ] <- variance.fixed[,3] Sigma[ variance.fixed[,c(2,1),drop=FALSE] ] <- variance.fixed[,3] } pi.k <- sirt_dmvnorm_discrete( theta.k, mean=mu, sigma=Sigma ) n.ik <- array( 0, dim=c(TP,I, K+1) ) probs <- array(0, dim=c(I,K+1,TP)) se.mu.i <- se.d <- se.c <- se.b <- se.a <- NULL iter <- 0 dev0 <- dev <- 0 conv <- devchange <- 1000 disp <- "...........................................................\n" while( ( ( maxdevchange < devchange ) | (globconv < conv) ) & ( iter < maxiter ) ){ cat(disp) cat("Iteration", iter+1, " ", paste( Sys.time() ), "\n" ) dev0 <- dev b0 <- b a0 <- a c0 <- c d0 <- d mu0 <- mu mu.i0 <- mu.i Sigma0 <- Sigma probres <- .smirt.calcprob( a, b, Q=Qmatrix, thetak=theta.kDES, c, d, mu.i, irtmodel ) probs <- problong2probarray( probres, I, TP ) if (QMC){ pi.k <- 1+0*pi.k } probsM <- matrix( aperm( probs, c(2,1,3) ), nrow=I*2, ncol=TP ) res1 <- calcpost( dat2, dat2.resp, probsM, dat2.ind, pi.k, K ) f.yi.qk <- res1$fyiqk f.qk.yi <- res1$f.qk.yi pi.k <- res1$pi.k n.ik <- array( res1$n.ik, dim=dim(n.ik) ) N.ik <- res1$N.ik res2 <- .smirt.est.b( b, a, c, d, mu.i, Qmatrix, est.b, theta.k=theta.kDES, n.ik, I, K, TP, D, numdiff.parm=numdiff.parm, max.increment=max.increment, msteps, mstepconv, irtmodel, increment.factor ) b <- res2$b se.b <- res2$se.b b <- smirt_squeeze( b, b.lower, b.upper, est.b ) if ( sum (est.a) > 0 ){ res2 <- .smirt.est.a( b, a, c, d, mu.i, Qmatrix, est.a, theta.k=theta.kDES, n.ik, I, K, TP, D=TD, numdiff.parm=numdiff.parm, max.a.increment=max.a.increment, msteps, mstepconv, irtmodel, increment.factor ) a <- res2$a se.a <- res2$se.a a <- smirt_squeeze( a, a.lower, a.upper, est.a ) } if ( sum (est.c) > 0 ){ res2 <- .smirt.est.c( b, a, c, d, mu.i, Qmatrix, est.c, theta.k=theta.kDES, n.ik, I, K, TP, D, numdiff.parm=numdiff.parm, max.increment=max.increment, msteps, mstepconv, irtmodel, increment.factor) c <- res2$c se.c <- res2$se.c c <- smirt_squeeze( c, c.lower, c.upper, est.c ) } if ( sum (est.d) > 0 ){ res2 <- .smirt.est.d( b, a, c, d, mu.i, Qmatrix, est.d, theta.k=theta.kDES, n.ik, I, K, TP, D, numdiff.parm=numdiff.parm, max.increment=max.increment, msteps, mstepconv, irtmodel, increment.factor ) d <- res2$d se.d <- res2$se.d d <- smirt_squeeze( d, d.lower, d.upper, est.d ) } if ( sum(est.mu.i) > 0 ){ res2 <- .smirt.est.mu.i.partcomp( b, a, c, d, mu.i, Qmatrix, est.mu.i, theta.k, n.ik, I, K, TP, D, numdiff.parm, max.increment=max.increment, msteps, mstepconv, increment.factor) mu.i <- res2$mu.i se.mu.i <- res2$se.mu.i } flush.console() if( increment.factor > 1){ max.increment <- max.increment / increment.factor max.a.increment <- max.a.increment / increment.factor } m1 <- .smirt.est.covariance( f.qk.yi, Sigma, theta.k, N, mu.fixed, variance.fixed, D, est.corr, irtmodel ) mu <- m1$mu Sigma <- m1$Sigma pi.k <- m1$pi.k pi.k <- matrix( pi.k, ncol=1 ) ll <- sum( log( rowSums( f.yi.qk * outer( rep(1,nrow(f.yi.qk)), pi.k[,1] ) ) ) ) if (QMC){ ll <- sum( log( rowMeans( f.yi.qk ) ) ) theta.k <- matrix( mu, nrow=TP, ncol=D, byrow=T ) + t ( t(chol(Sigma)) %*% t(theta.k0) ) theta.kDES <- theta.k } dev <- -2*ll conv <- max( abs(a-a0), abs(b-b0), abs(c-c0), abs(d-d0), abs(mu.i - mu.i0) ) iter <- iter+1 devchange <- abs( ( dev - dev0 ) / dev0 ) cat( paste( " Deviance=", round( dev, 4 ), if (iter > 1 ){ " | Deviance change=" } else {""}, if( iter>1){round( - dev + dev0, 6 )} else { ""} ,"\n",sep="") ) cat( paste( " Maximum b parameter change=", paste( round(max(abs(b-b0)),6), collapse=" " ), "\n", sep="")) cat( paste( " Maximum a parameter change=", paste( round(max(abs(a-a0)),6), collapse=" " ), "\n", sep="")) cat( paste( " Maximum c parameter change=", paste( round(max(abs(c-c0)),6), collapse=" " ), "\n", sep="")) cat( paste( " Maximum d parameter change=", paste( round(max(abs(d-d0)),6), collapse=" " ), "\n", sep="")) if (irtmodel=="partcomp"){ cat( paste( " Maximum mu.i parameter change=", paste( round(max(abs(mu.i-mu.i0)),6), collapse=" " ), "\n", sep="")) } cat( " Means: ", round( mu, 3 ), "\n") cat( " Standard deviations: ", round( sqrt(diag(Sigma)), 3 ), "\n") c1 <- stats::cov2cor(Sigma) cat( " Correlations ", round( c1[lower.tri(c1)], 3 ), "\n") } ic <- list( "deviance"=dev, "n"=nrow(dat2) ) ic$np.item <- 0 ic$np.item.b <- ic$np.item.a <- ic$np.item.c <- ic$np.item.d <- 0 if (irtmodel=="noncomp"){ for (dd in 1:D){ ic$np.item.b <- ic$np.item.b + length( setdiff( unique( est.b[,dd] ), 0 ) ) } } else { ic$np.item.b <- ic$np.item.b + length( setdiff( unique( est.b ), 0 ) ) } for (dd in 1:TD){ ic$np.item.a <- ic$np.item.a + length( setdiff( unique( est.a[,dd] ), 0 ) ) } ic$np.item.c <- length( setdiff( unique( est.c ), 0 ) ) ic$np.item.d <- length( setdiff( unique( est.d ), 0 ) ) ic$np.item.mu.i <- length( setdiff( unique( est.mu.i ), 0 ) ) ic$np.item <- ic$np.item.b + ic$np.item.a + ic$np.item.c + ic$np.item.d + ic$np.item.mu.i ic$np.cov <- 0 ic$np.cov.covM <- D*(D+1)/2 if ( est.corr ){ ic$np.cov.covM <- ic$np.cov.covM - D } if ( ! is.null(variance.fixed) ){ ic$np.cov.covM <- ic$np.cov.covM - nrow(variance.fixed) } ic$np.cov.mu <- D if ( ! is.null(mu.fixed) ){ ic$np.cov.mu <- ic$np.cov.mu - nrow(mu.fixed) } ic$np.cov <- ic$np.cov.covM + ic$np.cov.mu ic$np <- ic$np.item + ic$np.cov ic$AIC <- dev + 2*ic$np ic$BIC <- dev + ( log(ic$n) )*ic$np ic$CAIC <- dev + ( log(ic$n) + 1 )*ic$np ic$AICc <- ic$AIC + 2*ic$np * ( ic$np + 1 ) / ( ic$n - ic$np - 1 ) pers <- .smirt.person.parameters( data=dat2, D=D, theta.k=theta.k, p.xi.aj=f.yi.qk, p.aj.xi=f.qk.yi, weights=rep(1,N) ) person <- pers$person EAP.rel <- pers$EAP.rel item <- data.frame("item"=colnames(dat)) item$N <- colSums( dat2.resp ) item$p <- colSums( dat2, na.rm=TRUE) / item$N if ( irtmodel !="comp"){ for (dd in 1:( ncol(Qmatrix)) ){ b[ Qmatrix[,dd]==0, dd ] <- NA se.b[ est.b[,dd]==0, dd ] <- NA item[, paste0("b.",colnames(Qmatrix)[dd]) ] <- b[,dd] } } else { item$b <- b se.b[ est.b==0 ] <- NA } for (dd in 1:( ncol(Qmatrix)) ){ a[ Qmatrix[,dd]==0, dd ] <- NA if ( sum( est.a) !=0 ){ se.a[ est.a[,dd]==0, dd ] <- NA } item[, paste0("a.",colnames(Qmatrix)[dd]) ] <- a[,dd] } item$c <- c item$d <- d if ( irtmodel=="partcomp" ){ mu.i[ rowSums( Qmatrix > 0 )==1 ] <- NA item$mu.i <- mu.i } obji <- item for (vv in seq(2,ncol(obji) )){ obji[,vv] <- round( obji[,vv],3 ) } cat("*********************************\n") cat("Item Parameters\n") print( obji ) cat("*********************************\n") cat("EAP Reliability=", round(EAP.rel,3), "\n") s2 <- Sys.time() res <- list(deviance=dev, ic=ic, item=item, person=person, EAP.rel=EAP.rel, mean.trait=mu, sd.trait=sqrt(diag(Sigma)), Sigma=Sigma, cor.trait=stats::cov2cor(Sigma), b=b, se.b=se.b, a=a, se.a=se.a, c=c, se.c=se.c, d=d, se.d=se.d, mu.i=mu.i, se.mu.i=se.mu.i, f.yi.qk=f.yi.qk, f.qk.yi=f.qk.yi, probs=probs, n.ik=n.ik, iter=iter, dat2=dat2, dat2.resp=dat2.resp, dat=dat0, I=I, D=D, K=K, G=1, theta.k=theta.k, pi.k=pi.k, irtmodel=irtmodel, Qmatrix=Qmatrix, s1=s1, s2=s2 ) class(res) <- "smirt" return(res) }
as.Biclust <- function(object) { RowxNumber <- gather(object) %>% mutate(in_bicluster = !is.na(value)) %>% select(row_name, bicluster_no, in_bicluster) %>% group_by(row_name, bicluster_no) %>% summarise(in_bicluster = any(in_bicluster)) %>% ungroup() %>% arrange(bicluster_no) %>% mutate(bicluster_no = paste0("BC", bicluster_no)) %>% spread(bicluster_no, in_bicluster) %>% arrange(row_name) RowxNumber <- as.matrix(RowxNumber[, -1]) colnames(RowxNumber) <- NULL RowxNumber[is.na(RowxNumber)] <- FALSE NumberxCol <- gather(object) %>% mutate(in_bicluster = !is.na(value)) %>% select(col_name, bicluster_no, in_bicluster) %>% group_by(col_name, bicluster_no) %>% summarise(in_bicluster = any(in_bicluster)) %>% ungroup() %>% arrange(bicluster_no) %>% mutate(bicluster_no = paste0("BC", bicluster_no)) %>% spread(bicluster_no, in_bicluster) %>% arrange(col_name) NumberxCol NumberxCol <- as.matrix(NumberxCol[, -1]) colnames(NumberxCol) <- NULL NumberxCol[is.na(NumberxCol)] <- FALSE NumberxCol <- t(NumberxCol) Number <- ncol(object$P) * ncol(object$Q) BiclustResult( object$params, RowxNumber, NumberxCol, Number, list(NA) ) }
calculate_first_minimum_density = function(mat, log.transform=TRUE, adjust=2, makeplots=FALSE){ something.is.wrong <- FALSE if(base::is.vector(mat)){mat <- base::as.matrix(mat, ncol=1)} firstmin.vector <- base::vector(length=base::ncol(mat)) for(j in base::seq_len(base::ncol(mat))){ vec <- mat[,j] if(log.transform){vec = base::log2(vec+1)} dens <- stats::density(base::sort(vec), adjust=2) i <- 2 while(dens$y[i]==base::max(dens$y[1:i])){ i = i + 1 if(i > base::length(dens$y)){ something.is.wrong <- TRUE break } } i = i - 1 firstmax <- dens$x[i] idmax <- base::match(firstmax, dens$x) i <- idmax while(dens$y[i]==base::min(dens$y[idmax:i])){ i = i + 1 if(i > base::length(dens$y)){ something.is.wrong <- TRUE break } } i = i - 1 if(!something.is.wrong){ xmain <- dens$x[i:length(dens$x)] ymain <- dens$y[i:length(dens$x)] secondmax <- xmain[ymain==base::max(ymain)] firstmin <- xmain[ymain==base::min(ymain[xmain<secondmax])] if(makeplots){ x=NULL; y=NULL print(ggplot2::ggplot(data=base::data.frame("x"=dens$x, "y"=dens$y)) + ggplot2::theme_minimal() + ggplot2::geom_line(mapping=ggplot2::aes(x=x, y=y)) + ggplot2::geom_vline(xintercept=firstmin, color="blue")) } if(log.transform){ firstmax = 2^firstmax secondmax = 2^secondmax firstmin = 2^firstmin } firstmin.vector[j] <- firstmin } } if(base::sum(firstmin.vector == 0) > base::length(firstmin.vector) / 2){ base::message("Distribution does not appear to have two peaks, returning zero") firstmin.vector.median <- 0 }else{ firstmin.vector <- firstmin.vector[firstmin.vector > 0] firstmin.vector.median <- base::floor(stats::median(firstmin.vector)) } return(firstmin.vector.median) }
size_n.regII.ci_exp <- function(mx, my, sx2=((xmax-xmin)/6)^2, sy2, xmin, xmax, alpha=0.05){ if(xmin>xmax) stop("xmax < xmin !") if(sx2<0) stop("sx2<0 !") if(sy2<0) stop("sy2<0 !") n.3 <- 1003 n.2 <- 1002 n.1 <- Inf while(n.2!=n.1 & n.1!=n.3){ n <- ceiling(qt(1-alpha/2, n.1-2)^2*(1+max(c((xmin-mx)^2, (xmax-mx)^2))/sx2)) n.3 <- n.2 n.2 <- n.1 n.1 <- n } n }
predict.rocTree <- function(object, newdata, type = c("survival", "hazard"), control = list(), ...) { type <- match.arg(type) if (!is.rocTree(object)) stop("Response must be a 'rocTree' object") if (missing(newdata)) stop("Argument 'newdata' is missing") if (!(object$rName %in% colnames(newdata))) stop(paste("Object '", object$rName, "' not found.", sep = "")) if (!all(object$vName %in% colnames(newdata))) { missingName <- which(!(object$vName %in% colnames(newdata))) if (length(missingName) == 1) stop(paste("Object '", object$vName[missingName], "' not found.", sep = "")) if (length(missingName) > 1) stop(paste("Objects '", paste(object$vName[missingName], collapse = ", "), "' not found.", sep = "")) } type <- match.arg(type) control0 <- object$control control0[names(control0) %in% names(control)] <- control[names(control) %in% names(control0)] control <- control0 raw <- newdata[findInt(object$data$.Y0, unlist(newdata[object$rName])), object$vNames] rownames(raw) <- NULL cutoff <- (1:control$nc) / (control$nc + 1) if (type %in% "survival") { if (object$ensemble) pred <- predict_rocForest_C(t(raw), object$data$.Y0, object$data$.D0, object, object$data$.X, object$disc, cutoff) else pred <- predict_rocTree_C(t(raw), object$data$.Y0, object$data$.D0, object, object$data$.X, object$disc, cutoff) object$survFun <- stepfun(object$data$.Y0, c(1, pred)) object$pred <- data.frame(Time = unlist(newdata[,object$rName]), Survival = object$survFun(unlist(newdata[,object$rName]))) } if (type %in% "hazard") { t0 <- unlist(newdata[,object$rName]) t0 <- seq(quantile(t0, .05), quantile(t0, .95), length.out = control$K) knots <- findInt(t0, object$data$.Y0) .mat1f2 <- sapply(t0, K2, vec = object$data$.Y0, h = control$h) / control$h .mat1f2 <- .mat1f2[object$data$.D0 == 1,] if (object$ensemble) pred <- predict_rocForestHZ_C(t(raw[knots,]), t0, object$data$.Y0, object$data$.D0, .mat1f2, control$h, object, object$data$.X, object$disc, cutoff) else pred <- predict_rocTreeHZ_C(t(raw[knots,]), t0, object$data$.Y0, object$data$.D0, .mat1f2, control$h, object, object$data$.X, object$disc, cutoff) object$hazFun <- stepfun(t0, c(1, pred)) object$pred <- data.frame(Time = t0, hazard = object$hazFun(t0)) } rownames(object$pred) <- NULL class(object) <- "predict.rocTree" return(object) } is.predict.rocTree <- function(x) inherits(x, "predict.rocTree") findInt <- function(x, y) { pmax(1, findInterval(x, sort(y))) } findInt.X <- function(x, y) { order(c(0, y))[pmax(1, findInterval(x, sort(c(0, y))))] }
sfaGetIntRange <- function (range){ if(length(range)==1){ int=1:range; }else{ int=range[1]:range[2] } return(int) } customRep<-function(a,n){ res<-kronecker(array(1, c(n,1)), a) return(res) } customRepmat <- function(a,n,m) { res<-kronecker(matrix(1,n,m),a) return(res) } customSize<-function(x,i=NULL){ if((class(x)=="numeric")||(class(x)=="vector")||(class(x)=="integer")){ res=c(1,length(x)) } else{ res=dim(x) } if(is.null(i))return(res) if(i==1)return(res[1]) if(i==2)return(res[2]) } sfaCheckCondition <- function(matr, datatype){ ev=eigen(matr) ev=sort(ev$values) cn = abs(ev[length(ev)]/ev[1]); if (cn > 1e10){ if (datatype=="input"){ warning("It is recommended to use sfaList$ppType = PCA2. Covariance matrix of ", datatype," data is ill-conditioned. CN=",paste(cn," ")) } if (datatype=="expanded"){ warning("It is recommended to use method=SVDSFA in SFA-step. Covariance matrix of ", datatype," data is ill-conditioned. CN=",paste(cn," ")) } } } sfaBSh<-function(X,Y){ X<-qr(X) qr.coef(X,Y) }
input_multipliers_create <- function ( input_requirements, inverse, digits = NULL) { names_direct <- names (input_requirements) new_key_column <- input_requirements %>% select (1:2) %>% mutate(across(1, ~gsub(pattern ="_indicator", replacement = "", x =.data )) ) %>% mutate(across(1, ~paste0(.data, "_multiplier"))) col_n <- ncol(input_requirements) key_column <- subset ( input_requirements, select = 1) input_requirements_matrix <- input_requirements[,-1] inverse <- inverse[, -1] inverse <- as.matrix ( inverse ) input_requirements_matrix <- as.matrix ( input_requirements_matrix ) effects <- input_requirements_matrix %*% inverse multipliers <- effects for ( i in seq_len(nrow(effects))) { multipliers[i, ] <- effects[i, ] / input_requirements_matrix[i,] } if ( !is.null(digits) ) { if ( digits>=0 ) multipliers <- round ( multipliers, digits ) } cbind (new_key_column[,1], multipliers) }
library(ggsolvencyii) context("fn_cornerpoints for a surfaceplot") testdata <- sii_z_ex1_data testdata_ggplotformat <- dplyr::rename(testdata, x = time, y = ratio, id = id, description = description , value = value ) testdata_ggplotformat <- dplyr::mutate(testdata_ggplotformat, group = id) testparams <- NULL testparams$structure = sii_structure_sf16_eng testparams$levelmax <- sii_levelmax_sf16_993 testparams$aggregatesuffix <- "_other" intresultA <- ggsolvencyii:::fn_structure_expansion(testparams) intresultB <- ggsolvencyii:::fn_structure_data_integration(expandedstructure = intresultA, data = testdata_ggplotformat) intresultB_group2 <- intresultB[intresultB$group == 2, ] testparams$maxscrvalue <- ggsolvencyii:::fn_maxscrvalue(data = testdata_ggplotformat, params = testparams) testparams$tocenter <- FALSE testparams$plotdetails <- ggsolvencyii:::fn_constructionplotdetails(structure = testparams$structure) testresultA <- ggsolvencyii:::fn_cornerpoints(df = intresultB_group2, siiparams = testparams) testresultAa <- c("ri", "ro", "db" , "de") %in% colnames(testresultA) testresultAa <- Reduce("==", testresultAa ) test_that("fn_cornerpoints" ,{ expect_equal( testresultAa, TRUE) }) rm(testdata) rm(testdata_ggplotformat) rm(testparams) rm(intresultA) rm(intresultB) rm(testresultA)
print.grnnForecast <- function (x, ...) { cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n" ), "\n\n", sep = "" ) cat("Multiple-Step Ahead Strategy:", x$msas, "\n") cat("Sigma (smoothing parameter):", x$model$sigma, "\n") cat("Autoregressive lags:", rev(x$model$lags), "\n") cat("Number of examples:", nrow(x$model$examples$patterns), "\n") invisible(x) } summary.grnnForecast <- function (object, ...) { structure( list( call = object$call, sigma = object$model$sigma, msas = object$msas, lags = rev(object$model$lags), prediction = object$prediction, transformation = object$transformation ), class = "summary.grnnForecast" ) } print.summary.grnnForecast <- function (x, ...) { stopifnot(inherits(x, "summary.grnnForecast")) cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n" ), "\n\n", sep = "" ) cat("Multiple-Step Ahead Strategy:", x$msas, "\n") cat("Sigma (smoothing parameter):", x$sigma, "\n") cat("Autoregressive lags:", x$lags, "\n") cat("Type of training samples transformation:", x$transformation, "\n") cat("Forecasting horizon:", length(x$prediction), "\n") cat("Forecast:\n") print(x$prediction) invisible(x) }
rSab_fc<-function(a,b,Sab0=NULL,eta0=NULL) { if(is.null(Sab0)){ Sab0<-diag(2) } if(is.null(eta0)){ eta0<-4 } solve(rwish(solve(eta0*Sab0+crossprod(cbind(a, b))), eta0+length(a))) }
context("user/properties") test_that("we can get the properties of a user", { testthat::skip_on_cran() skip_unless_integration() props <- rt_user_properties(1) testthat::expect_is(props, "list") testthat::expect_length(props, 6) testthat::expect_true(props$Name == "RT_System") }) test_that("we throw an error on user not found", { testthat::skip_on_cran() skip_unless_integration() testthat::expect_error( rt_user_properties(2), "does not exist") })
library(fs) test_that("test parameteriesed report output", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "parameterised.Rmd"), path(f, "report_sources") ) compile_reports( "parameterised", f, params = list(test1 = "three", test2 = "four") ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "param_report_check.md", compare = compare_file_text) }) test_that("test ignore_case works report output", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "parameterised.Rmd"), path(f, "report_sources") ) compile_reports( "parameterised.rmd", f, ignore.case = TRUE, params = list(test1 = "three", test2 = "four") ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "param_report_check.md", compare = compare_file_text) expect_error( compile_reports( "parameterised.rmd", f, ignore.case = FALSE, params = list(test1 = "three", test2 = "four") ) ) }) test_that("test output folder gets recreated if not there", { skip_if_pandoc_not_installed() skip_on_os("windows") skip_on_os("mac") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "parameterised.Rmd"), path(f, "report_sources") ) file.remove(file.path(f, "outputs")) compile_reports( "parameterised", f, params = list(test1 = "three", test2 = "four") ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "outputs_deleted_param_report_check.md", compare = compare_file_text) }) test_that("parameteriesed report with missing param output but input", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "parameterised_with_missing.Rmd"), path(f, "report_sources") ) compile_reports( "parameterised", f, params = list(test2 = "four", test3 = "five") ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "missing_param_report_check.md", compare = compare_file_text) }) test_that("non parameteriesed report with param input", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "simple2.Rmd"), path(f, "report_sources") ) compile_reports( "simple", f, params = list(test2 = "four", test3 = "five") ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "nonparameterised_with_params.md", compare = compare_file_text) }) test_that("parameteriesed report with missing param (but in environment)", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path("test_reports", "parameterised_with_missing.Rmd"), path(f, "report_sources") ) params = list(test2 = "four", test3 = "five") compile_reports( "parameterised", f ) md_file <- grep("\\.md", list_outputs(f), value = TRUE) md_file <- path(f, "outputs", md_file) expect_snapshot_file(md_file, "missing_param_but_envir.md", compare = compare_file_text) }) test_that("integer index for reports", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path = c( path("test_reports", "simple.Rmd"), path("test_reports", "parameterised.Rmd") ), path(f, "report_sources") ) file_copy( path("test_reports", "simple.Rmd"), path(f, "report_sources", "dimple.Rmd") ) file_delete(path(f, "report_sources", "example_report.Rmd")) idx <- c(1, 3) compile_reports(idx, f, timestamp = "test") nms <- path_ext_remove(list_reports(f))[idx] nms <- paste(nms, collapse = "|") expected_files <- c( file.path("simple", "test", "simple.Rmd"), file.path("simple", "test", "simple.html"), file.path("simple", "test", "simple.md"), file.path("simple", "test", "simple_files", "figure-gfm", "pressure-1.png"), file.path("dimple", "test", "dimple.Rmd"), file.path("dimple", "test", "dimple.html"), file.path("dimple", "test", "dimple.md"), file.path("dimple", "test", "dimple_files", "figure-gfm", "pressure-1.png"), file.path("parameterised", "test", "parameterised.Rmd"), file.path("parameterised", "test", "parameterised.md") ) expected_files <- expected_files[grepl(nms, expected_files)] output_files <- list_outputs(f) expect_true(all( mapply( grepl, pattern = sort(expected_files), x = sort(output_files), MoreArgs = list(fixed = TRUE) ) )) }) test_that("logical index for reports", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path = c( path("test_reports", "simple.Rmd"), path("test_reports", "parameterised.Rmd") ), path(f, "report_sources") ) file_copy( path("test_reports", "simple.Rmd"), path(f, "report_sources", "dimple.Rmd") ) file_delete(path(f, "report_sources", "example_report.Rmd")) idx <- c(TRUE, FALSE) compile_reports(idx, f, timestamp = "test") nms <- path_ext_remove(list_reports(f))[idx] nms <- paste(nms, collapse = "|") expected_files <- c( file.path("simple", "test", "simple.Rmd"), file.path("simple", "test", "simple.html"), file.path("simple", "test", "simple.md"), file.path("simple", "test", "simple_files", "figure-gfm", "pressure-1.png"), file.path("dimple", "test", "dimple.Rmd"), file.path("dimple", "test", "dimple.html"), file.path("dimple", "test", "dimple.md"), file.path("dimple", "test", "dimple_files", "figure-gfm", "pressure-1.png"), file.path("parameterised", "test", "parameterised.Rmd"), file.path("parameterised", "test", "parameterised.md") ) expected_files <- expected_files[grepl(nms, expected_files)] output_files <- list_outputs(f) expect_true(all( mapply( grepl, pattern = sort(expected_files), x = sort(output_files), MoreArgs = list(fixed = TRUE) ) )) }) test_that("figures folders copied correctly reports", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_copy( path = path("test_reports", "simple_with_figures_folder.Rmd"), path(f, "report_sources") ) file_delete(path(f, "report_sources", "example_report.Rmd")) compile_reports(factory = f, timestamp = "test") nms <- path_ext_remove(list_reports(f)) nms <- paste(nms, collapse = "|") expected_files <- c( file.path("simple_with_figures_folder", "test", "simple_with_figures_folder.Rmd"), file.path("simple_with_figures_folder", "test", "simple_with_figures_folder.html"), file.path("simple_with_figures_folder", "test", "figures", "pressure-1.png") ) expected_files <- expected_files[grepl(nms, expected_files)] output_files <- list_outputs(f) expect_true(all( mapply( grepl, pattern = sort(expected_files), x = sort(output_files), MoreArgs = list(fixed = TRUE) ) )) }) test_that("compiling with no reports errors correctly", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) file_delete(path(f, "report_sources", "example_report.Rmd")) expect_error( compile_reports(factory = f), "No reports found in", fixed = TRUE ) }) test_that("compiling with invalid index errors correctly", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) expect_error( compile_reports(2, factory = f), "Unable to match reports with the given index", fixed = TRUE ) }) test_that("compiling with incorrect report name errors correctly", { skip_if_pandoc_not_installed() skip_on_os("windows") f <- new_factory(path = path_temp(), move_in = FALSE) on.exit(dir_delete(f)) expect_error( compile_reports("test", factory = f), "Unable to find matching reports to compile", fixed = TRUE ) })
context("Test: download.database()") test_that("The download.database() throws error when wrong input database is specified..",{ skip_on_cran() skip_on_travis() expect_error(download.database(db = "nr")) })
rmpg <- function(dataset, ipuc = "ipuc", hhcsw = "DB090", hhsize = "HX040", arpt.value = NULL, ci = NULL, rep = 1000, verbose = FALSE){ if(is.null(arpt.value)) arpt.value <- arpt(dataset, ipuc, hhcsw, hhsize) dataset <- dataset[order(dataset[,ipuc]),] if(is.null(ci)){ rmpg.data <- dataset[which(dataset[,ipuc] < arpt.value),] rmpg.data$weights.rmpg <- rmpg.data[,hhcsw]*rmpg.data[,hhsize] rmpg.data$acum.weights.rmpg <- cumsum(rmpg.data$weights.rmpg) rmpg.data$abscisa.rmpg <- rmpg.data$acum.weights.rmpg/rmpg.data$acum.weights.rmpg[length(rmpg.data$acum.weights.rmpg)] rmpg.median <- rmpg.data[which(rmpg.data$abscisa.rmpg > 0.5)[1],ipuc] rmpg <- 100*(arpt.value-rmpg.median)/arpt.value return(rmpg) }else{ rmpg3 <- function(dataset, i, arpt.value){ dataset.boot <- dataset[i,] dataset.boot <- dataset.boot[order(dataset.boot[,ipuc]), ] rmpg.data <- dataset.boot[which(dataset.boot[,ipuc] < arpt.value),] rmpg.data$weights.rmpg <- rmpg.data[,hhcsw]*rmpg.data[,hhsize] rmpg.data$acum.weights.rmpg <- cumsum(rmpg.data$weights.rmpg) rmpg.data$abscisa.rmpg <- rmpg.data$acum.weights.rmpg/rmpg.data$acum.weights.rmpg[length(rmpg.data$acum.weights.rmpg)] rmpg.median <- rmpg.data[which(rmpg.data$abscisa.rmpg > 0.5)[1],ipuc] 100*(arpt.value-rmpg.median)/arpt.value } boot.rmpg <- boot::boot(dataset, statistic = rmpg3, R = rep, sim = "ordinary", stype = "i", arpt.value = arpt.value) rmpg.ci <- boot::boot.ci(boot.rmpg, conf = ci, type = "basic") if(verbose == FALSE){ return(rmpg.ci) }else{ plot(boot.rmpg) summary(rmpg.ci) return(rmpg.ci) } } }
gof <- function(obs, fit, methods=c("FT"), p.out=FALSE){ retvals <- list() if("FT" %in% methods){ ftres <- ft.res(obs, fit, p.out=p.out) retvals <- c(retvals, list(ft.res=ftres)) } if("KL" %in% methods){ kl <- kl.divergence(obs, fit) + kl.divergence(fit, obs) retvals <- c(retvals, list(kl.div=kl)) } if("Chisq" %in% methods){ chisq <- chisq.test(obs, fit) chisq <- list(statistic=chisq$stat, df=chisq$parameter, p.value=chisq$p.value) retvals <- c(retvals, list(chisq=chisq)) } retvals$methods <- methods class(retvals) <- "snse.gof" retvals } print.snse.gof <- function(x, ...){ if("FT" %in% x$methods){ cat("Freeman-Tukey Residuals:\n") cat("------------------------\n") print(x$ft.res) cat("\n") } if("KL" %in% x$methods){ cat("Symmetrised Kullback-Leibler divergence:\n") cat("----------------------------------------\n") print(x$kl.div) cat("\n") } if("Chisq" %in% x$methods){ cat("Pearson's Chi-squared Test:\n") cat("---------------------------\n") cat("H0: The data is consistent with the specified distribution\n\n") cat(paste0("X-squared = ",x$chisq$stat, ", df = ",x$chisq$df, ", p-value = ",round(x$chisq$p.value, 3))) cat("\n") } } ft.res <- function(obs, fit, p.out=TRUE){ FT <- as.numeric(sqrt(obs) + sqrt(obs+1) - sqrt(4*fit+1)) if(p.out){ par(mfrow=c(1,1)) qqnorm(FT, main="Freeman-Tukey Residuals QQPlot") qqline(FT, col=2) } return(FT) } kl.divergence <- function(p, q){ pn <- p / sum(p) qn <- q / sum(q) return( sum(pn*(log(pn) - log(qn))) ) }
require(chillR) daylength(latitude=50.4,JDay=15) all_daylengths<-cbind(JDay=1:365,sapply(daylength(latitude=50.5,JDay=1:365),cbind)) knitr::kable(head(all_daylengths)) weather<-make_all_day_table(KA_weather) hourtemps<-stack_hourly_temps(weather, latitude=50.4)$hourtemps hourtemps$DATE<-ISOdate(hourtemps$Year,hourtemps$Month,hourtemps$Day,hourtemps$Hour) knitr::kable(hourtemps[20:30,],row.names = FALSE) par(mar=c(5,5,1,1)) plot(hourtemps$Temp[10:250]~hourtemps$DATE[10:250],type="l",col="red",lwd=3, xlab="Date",ylab="Temperature (°C)",xaxs="i") KA_weather_gaps<-KA_weather[1:100,] KA_weather_gaps[,"Tmin_original"]<-KA_weather_gaps[,"Tmin"] KA_weather_gaps[,"Tmax_original"]<-KA_weather_gaps[,"Tmax"] KA_weather_gaps$Tmin[c(4:15,20:30,35:40,44:45,48,50:60)]<-NA KA_weather_gaps$Tmax[c(3:10,12:15,17:20,30:35,42:60,65:70)]<-NA fixed<-fix_weather(KA_weather_gaps) par(mar=c(5,5,1,1)) plot(fixed$weather$Tmin_original~fixed$weather$DATE,type="l",lwd=4,col="blue", ylim=c(min(fixed$weather[,c("Tmin","Tmin_original")],na.rm=TRUE), max(fixed$weather[,c("Tmax","Tmax_original")],na.rm=TRUE)),xaxs="i", xlab="Date",ylab="Temperature (°C)") lines(fixed$weather$Tmax_original~fixed$weather$DATE,type="l",lwd=4,col="red") lines(fixed$weather$Tmin~fixed$weather$DATE,type="l",lwd=2) lines(fixed$weather$Tmax~fixed$weather$DATE,type="l",lwd=2) stations<-read.csv("KA_stations.csv") knitr::kable(stations[1:10,c(1:2,4:5,8)]) patch_weather<-read.csv("KA_patch.csv") knitr::kable(patch_weather[1:5,]) patched_weather<-patch_daily_temperatures(KA_weather_gaps,patch_weather) knitr::kable(patched_weather$statistics) par(mar=c(5,5,0,0)) plot(fixed$weather$Tmin_original~fixed$weather$DATE,type="l",lwd=4,col="blue", ylim=c(min(fixed$weather[,c("Tmin","Tmin_original")],na.rm=TRUE), max(fixed$weather[,c("Tmax","Tmax_original")],na.rm=TRUE)),xaxs="i", xlab="Date",ylab="Temperature (°C)") lines(fixed$weather$Tmax_original~fixed$weather$DATE,type="l",lwd=4,col="red") lines(patched_weather$weather$Tmin~fixed$weather$DATE,type="l",lwd=2) lines(patched_weather$weather$Tmax~fixed$weather$DATE,type="l",lwd=2) Winters_hours_gaps[,"DATE"]<-ISOdate(Winters_hours_gaps$Year,Winters_hours_gaps$Month,Winters_hours_gaps$Day,Winters_hours_gaps$Hour) par(mar=c(5,5,1,1)) plot(Winters_hours_gaps$Temp[50:300]~Winters_hours_gaps$DATE[50:300],type="l", lwd=2,col="dark grey",xaxs="i",xlab="Date",ylab="Temperature (°C)") lines(interpolate_gaps(Winters_hours_gaps$Temp_gaps)$interp[50:300]~Winters_hours_gaps$DATE[50:300],col="red",lwd=2) lines(Winters_hours_gaps$Temp_gaps[50:300]~Winters_hours_gaps$DATE[50:300],type="l",lwd=2) winters_daily<-read.csv("winters_daily.csv") knitr::kable(winters_daily[1:5,]) to_interp<-Winters_hours_gaps to_interp[,"Temp_recorded"]<-to_interp[,"Temp"] to_interp[,"Temp"]<-to_interp[,"Temp_gaps"] interp<-interpolate_gaps_hourly(hourtemps=to_interp,latitude=38.5, daily_temps=list(Winters=winters_daily)) knitr::kable(interp$daily_patch_report,row.names = FALSE,align="r") knitr::kable(interp$weather[30:45,c(1:5,10)],row.names = FALSE, align=c("r","r","r","r","r","r")) inter<-interp$weather inter[,"DATE"]<-ISOdate(inter$Year,inter$Month,inter$Day,inter$Hour) par(mar=c(5,5,1,1)) plot(inter$Temp_recorded[50:300]~inter$DATE[50:300],type="l", lwd=2,col="dark grey",xaxs="i",xlab="Date",ylab="Temperature (°C)") lines(inter$Temp[50:300]~inter$DATE[50:300],col="red",lwd=2) lines(inter$Temp_gaps[50:300]~inter$DATE[50:300],type="l",lwd=2) require(stats) y<-rnorm(100) IQ<-quantile(y)[4]-quantile(2)[2] orchard_extremes<-make_all_day_table(inter,timestep="day", input_timestep = "hour") winters_hours<-stack_hourly_temps(fix_weather(winters_daily),latitude=38)$hourtemps start_hour_winters<-which(winters_hours$Year==inter$Year[1]& winters_hours$Month==inter$Month[1]& winters_hours$Day==inter$Day[1]& winters_hours$Hour==inter$Hour[1]) end_hour_winters<-which(winters_hours$Year==inter$Year[nrow(inter)]& winters_hours$Month==inter$Month[nrow(inter)]& winters_hours$Day==inter$Day[nrow(inter)]& winters_hours$Hour==inter$Hour[nrow(inter)]) orchard_hours<-stack_hourly_temps(orchard_extremes,latitude=38)$hourtemps start_hour_orchard<-which(orchard_hours$Year==inter$Year[1]& orchard_hours$Month==inter$Month[1]& orchard_hours$Day==inter$Day[1]& orchard_hours$Hour==inter$Hour[1]) end_hour_orchard<-which(orchard_hours$Year==inter$Year[nrow(inter)]& orchard_hours$Month==inter$Month[nrow(inter)]& orchard_hours$Day==inter$Day[nrow(inter)]& orchard_hours$Hour==inter$Hour[nrow(inter)]) observed<-inter$Temp_recorded option1<-winters_hours$Temp[start_hour_winters:end_hour_winters] option2<-orchard_hours$Temp[start_hour_orchard:end_hour_orchard] option3<-interpolate_gaps(inter$Temp_gaps)$interp option4<-inter$Temp eval_table<-eval_table_gaps<-data.frame(Option=1:4, Input_data=c("daily","daily","hourly","hourly"), Interpolation_method=c("from proxy","local extremes", "linear","hourly interpolation"), RMSEP=NA,RPIQ=NA) observed_gaps<-observed[which(is.na(inter$Temp_gaps))] option1_gaps<-option1[which(is.na(inter$Temp_gaps))] option2_gaps<-option2[which(is.na(inter$Temp_gaps))] option3_gaps<-option3[which(is.na(inter$Temp_gaps))] option4_gaps<-option4[which(is.na(inter$Temp_gaps))] eval_table_gaps[,"RMSEP"]<-round(c(RMSEP(option1_gaps,observed_gaps), RMSEP(option2_gaps,observed_gaps), RMSEP(option3_gaps,observed_gaps), RMSEP(option4_gaps,observed_gaps)),1) eval_table_gaps[,"RPIQ"]<-round(c(RPIQ(option1_gaps,observed_gaps), RPIQ(option2_gaps,observed_gaps), RPIQ(option3_gaps,observed_gaps), RPIQ(option4_gaps,observed_gaps)),1) knitr::kable(eval_table_gaps,row.names = FALSE) eval_table<-data.frame(Option=1:4, Input_data=c("daily","daily","hourly","hourly"), Interpolation_method=c("from proxy","local extremes", "linear","hourly interpolation"), RMSEP=NA,RPIQ=NA) eval_table[,"RMSEP"]<-round(c(RMSEP(option1,observed),RMSEP(option2,observed), RMSEP(option3,observed),RMSEP(option4,observed)),1) eval_table[,"RPIQ"]<-round(c(RPIQ(option1,observed),RPIQ(option2,observed), RPIQ(option3,observed),RPIQ(option4,observed)),1) knitr::kable(eval_table,row.names = FALSE) option1_chill<-Dynamic_Model(option1) option2_chill<-Dynamic_Model(option2) option3_chill<-Dynamic_Model(option3) option4_chill<-Dynamic_Model(option4) observed_chill<-Dynamic_Model(observed) plot(observed_chill~inter$DATE,type="l",lwd=2,col="black",ylab="Chill Portions (cumulative)", xlab="Date",ylim=c(0,max(c(option1_chill,option2_chill, option3_chill,option4_chill, observed_chill))),xaxs="i") lines(option1_chill~inter$DATE,type="l",lwd=2,col="orange") lines(option2_chill~inter$DATE,type="l",lwd=2,col="red") lines(option3_chill~inter$DATE,type="l",lwd=2,col="green") lines(option4_chill~inter$DATE,type="l",lwd=2,col="blue") mtext("Observed temperatures",3,adj=0.02,line=-0.8, cex=0.8, col="black") mtext("Option 1 - idealized record from proxy data",3,adj=0.02, line=-1.6, cex=0.8,col="orange") mtext("Option 2 - idealized record from daily orchard data",3,adj=0.02, line=-2.4, cex=0.8,col="red") mtext("Option 3 - linear interpolation of hourly data",3,adj=0.02, line=-3.2, cex=0.8,col="green") mtext("Option 4 - use of interpolate_gaps_hourly",3,adj=0.02, line=-4, cex=0.8,col="blue") option1_heat<-GDH(option1) option2_heat<-GDH(option2) option3_heat<-GDH(option3) option4_heat<-GDH(option4) observed_heat<-GDH(observed) plot(observed_heat~inter$DATE,type="l",lwd=2,col="black",ylab="Growing Degree Hours (cumulative)", xlab="Date",ylim=c(0,max(c(option1_heat,option2_heat, option3_heat,option4_heat, observed_heat))),xaxs="i") lines(option1_heat~inter$DATE,type="l",lwd=2,col="orange") lines(option2_heat~inter$DATE,type="l",lwd=2,col="red") lines(option3_heat~inter$DATE,type="l",lwd=2,col="green") lines(option4_heat~inter$DATE,type="l",lwd=2,col="blue") mtext("Observed temperatures",3,adj=0.02,line=-0.8, cex=0.8, col="black") mtext("Option 1 - idealized record from proxy data",3,adj=0.02, line=-1.6, cex=0.8,col="orange") mtext("Option 2 - idealized record from daily orchard data",3,adj=0.02, line=-2.4, cex=0.8,col="red") mtext("Option 3 - linear interpolation of hourly data",3,adj=0.02, line=-3.2, cex=0.8,col="green") mtext("Option 4 - use of interpolate_gaps_hourly",3,adj=0.02, line=-4, cex=0.8,col="blue") chill_heat_eval<-rbind(data.frame(Option=0,Input_data="observed", Interpolation_method="none"),eval_table[,1:3]) chill_heat_eval[,"Chill Portions"]<-round(c(observed_chill[length(observed)], option1_chill[length(option1)], option2_chill[length(option2)], option3_chill[length(option3)], option4_chill[length(option4)]),1) chill_heat_eval[,"Growing Degree Hours"]<- round(c(observed_heat[length(observed)], option1_heat[length(option1)], option2_heat[length(option2)], option3_heat[length(option3)], option4_heat[length(option4)]),0) knitr::kable(chill_heat_eval,row.names = FALSE)
dropZLB <- function(tree){ if(!inherits(tree,"phylo")){ stop("tree must be of class 'phylo'") } drop_e <- (tree$edge[,2]<(Ntip(tree)+1)) & (tree$edge.length == 0) drop_t <- (tree$edge[,2])[drop_e] if((Ntip(tree)-length(drop_t))>1){ tree1 <- drop.tip(tree,drop_t) if(!is.null(tree$root.time)){ tree1 <- fixRootTime(treeOrig = tree, treeNew = tree1) } res <- tree1 }else{ res <- NA } return(res) } dropExtinct <- function(tree, tol = 0.01, ignore.root.time = FALSE ){ if(!inherits(tree,"phylo")){ stop("tree must be of class 'phylo'") } if(is.null(tree$root.time)){ message("No tree$root.time: Assuming latest tip is at present (time = 0)") } dnode <- node.depth.edgelength(tree)[1:Ntip(tree)] dnode <- round(dnode,6) if(!is.null(tree$root.time) & !ignore.root.time){ if(round(tree$root.time,6)>max(dnode)){ stop("all tips are extinct based on tree$root.time!") } } droppers <- which((dnode+tol)<max(dnode)) if((Ntip(tree)-length(droppers))<2){ stop("Less than 2 tips are extant on the tree!") } stree <- drop.tip(tree,droppers) if(!is.null(tree$root.time)){ stree <- fixRootTime(treeOrig = tree, treeNew = stree) } return(stree) } dropExtant <- function(tree,tol = 0.01){ if(!inherits(tree,"phylo")){ stop("tree must be of class 'phylo'") } if(is.null(tree$root.time)){ message("Warning: no tree$root.time! Assuming latest tip is at present (time = 0)") } dnode <- node.depth.edgelength(tree)[1:Ntip(tree)] dnode <- round(dnode,6) if(!is.null(tree$root.time)){if(round(tree$root.time,6)>max(dnode)){stop("all tips are extinct based on tree$root.time!")}} droppers <- which((dnode+tol)>max(dnode)) if((Ntip(tree)-length(droppers))<2){stop("Less than 2 tips extinct on the tree!")} stree <- drop.tip(tree,droppers) if(!is.null(tree$root.time)){ stree <- fixRootTime(treeOrig = tree, treeNew = stree) } return(stree) } addTermBranchLength <- function(tree,addtime = 0.001){ if(!inherits(tree,"phylo")){ stop("tree must be of class 'phylo'") } branchSel <- tree$edge[,2]<(Ntip(tree)+1) newBrLen <- tree$edge.length[branchSel]+addtime tree$edge.length[newBrLen] <- newBrLen if(any(tree$edge.length<0)){ stop("tree has negative branch lengths!") } if(!is.null(tree$root.time)){ tree$root.time <- tree$root.time + addtime } return(tree) } dropPaleoTip <- function(tree, ...){ tree1 <- drop.tip(phy = tree, ...) tree1 <- fixRootTime(treeOrig = tree, treeNew = tree1) return(tree1) } bindPaleoTip <- function(tree, tipLabel, nodeAttach = NULL, tipAge = NULL, edgeLength = NULL, positionBelow = 0, noNegativeEdgeLength = TRUE){ tipLabel <- as.character(tipLabel) if(!is.character(tipLabel)){ stop("cannot coerce tipLabel to a string value") } if(length(tipLabel) != 1){ stop("A string of length = 1 is needed for tipLabel (i.e. for a single tip) is required") } if(positionBelow<0){ stop("bindTipPaleo does not accept negative positionBelow values") } if(nodeAttach == (Ntip(tree)+1)){ if(positionBelow>0){ if(is.null(tree$root.edge)){ tree$root.edge <- positionBelow }else{ if(tree$root.edge<positionBelow){ tree$root.edge <- positionBelow } } } }else{ if(positionBelow>tree$edge.length[tree$edge[,2] == nodeAttach]){ stop( "positionBelow cannot be greater than the $edge.length of the edge below nodeAttach" ) } } if(is.null(tree$root.time)){ warning( "No tree$root.time given; Setting root.time such that latest tip is at present (time = 0)" ) tree$root.time <- max(node.depth.edgelength(tree)) } if(is.null(tree$edge.length)){ stop("bindTipPaleo is for trees with edge lengths") } if(is.null(edgeLength)){ if(!is.null(tipAge)){ nodeHeight <- node.depth.edgelength(tree)[nodeAttach] modNodeHeight <- nodeHeight-positionBelow newLength <- tree$root.time-tipAge-modNodeHeight if(newLength<0){ if(noNegativeEdgeLength){ stop(paste0("Negative edge length created due to tipAge being", " older than age of nodeAttach + positionBelow")) }else{ message(paste0("Warning: negative edge length created due to tipAge being", " older than age of nodeAttach + positionBelow")) } } }else{ stop("either tipAge or edgeLength must be given") } }else{ if(!is.null(tipAge)){ stop("both tipAge or edgeLength cannot be given") } newLength <- edgeLength if(newLength<0 & noNegativeEdgeLength){ stop("Negative edgeLength given ?!") } } tree1 <- bind.tip(tree, tip.label = tipLabel, where = nodeAttach, position = positionBelow, edge.length = newLength ) if(nodeAttach == (Ntip(tree)+1) & positionBelow>0){ tree1$root.time <- tree1$root.time + positionBelow } if(!is.null(tree1$root.edge)){ if(tree1$root.edge == 0){tree1$root.edge <- NULL} } return(tree1) }
sigtestCI <- function(p) { if (runif(1) < (1 - p)) { cat("H0 NOT rejected\n") cat(100 * (1 - p), "% conf. int.: empty set\n") } else { cat("Hurray!!! H0 REJECTED!!!\n") cat(100 * (1 - p), paste("% conf. int.: -", expression(infinity), "to +", expression(infinity), "\n")) } }
skewnessTest <- function(object, test = "agostino") { if (! inherits(object,"sfacross")) { stop("Argument 'object' must be of class 'sfacross'") } if (test == "agostino") { object$AgostinoTest } else { if (test == "coelli") { tt=list("data.name" = deparse(substitute(object)), "statistic" = object$CoelliM3Test["z"], "p.value" = object$CoelliM3Test["p.value"], "method" = " class(tt) <- "htest" return(tt) } else { stop("argument 'test' must be either 'agostino', or 'coelli'", call. = FALSE) } } }
library("leiden") library("reticulate") library("igraph") context("running Leiden on an igraph object") set.seed(9000) adj_mat <- matrix(round(runif(10000, 0, 1)), 100, 100) snn_graph <- graph_from_adjacency_matrix(adj_mat) modules <- reticulate::py_module_available("leidenalg") && reticulate::py_module_available("igraph") skip_if_no_python <- function() { if (!modules) testthat::skip("leidenalg not available for testing") } test_that("run with defaults", { skip_if_no_python() partition <- leiden(snn_graph) expect_length(partition, 100) }) test_that("run with ModularityVertexPartition", { skip_if_no_python() partition <- leiden(snn_graph, partition_type = "ModularityVertexPartition") expect_length(partition, 100) }) test_that("run with resolution parameter", { skip_if_no_python() partition <- leiden(snn_graph, resolution_parameter = 0.95) expect_length(partition, 100) }) test_that("run with max_comm_size", { skip_if_no_python() partition <- leiden(snn_graph, partition_type = "ModularityVertexPartition", resolution_parameter = 0.2, max_comm_size = 8, degree_as_node_size = TRUE, seed = 9001) expect_length(partition, length(V(snn_graph))) expect_equal(sort(unique(partition)), 1:13) expect_equal(max(table(partition)), 8) }) test_that("run on igraph object with random seed", { skip_if_no_python() partition <- leiden(snn_graph, seed = 42L, weights = NULL) expect_length(partition, 100) expect_identical(leiden(snn_graph, seed = 42L, weights = NULL), leiden(snn_graph, seed = 42L, weights = NULL)) }) weights <- sample(1:10, sum(adj_mat!=0), replace=TRUE) test_that("run with non-wieghted igraph object and weights vector", { skip_if_no_python() partition <- leiden(snn_graph, weights = weights) expect_length(partition, 100) }) adj_mat <- ifelse(adj_mat == 1, weights, 0) snn_graph <- graph_from_adjacency_matrix(adj_mat, weighted = TRUE) test_that("run with wieghted igraph object", { skip_if_no_python() partition <- leiden(snn_graph) expect_length(partition, 100) }) rownames(adj_mat) <- 1:nrow(adj_mat) colnames(adj_mat) <- 1:ncol(adj_mat) test_that("run with named adjacency matrix", { skip_if_no_python() partition <- leiden(snn_graph) expect_length(partition, 100) })
NULL daFisher <- function(x, grp, coda=TRUE, method = "classical", plotScore = FALSE, ...){ clInfo <- class(x)[1] if(clInfo == "data.frame") x <- as.matrix(x) if(length(grp) != dim(x)[1]){ stop(paste("grp must be of length", dim(x)[1])) } if(dim(x)[2] < 1){ stop("matrix or data.frame expected.") } if(coda){ x <- pivotCoord(x) } n <- nrow(x) p <- ncol(x) grp <- as.factor(grp) glev <- levels(grp) g <- length(glev) pj <- rep(NA,g) meanj <- matrix(NA,nrow=p,ncol=g) cv <- list() for (j in 1:g){ pj[j] <- sum(grp==glev[j])/n if(method == "classical"){ meanj[,j] <- apply(x[grp==glev[j],],2,mean) cv[[j]] <- cov(x[grp==glev[j],]) } else { robcov <- covMcd(x[grp==glev[j],]) meanj[,j] <- robcov$center cv[[j]] <- robcov$cov } } meanov <- meanj%*%pj B <- matrix(0,p,p) W <- matrix(0,p,p) for (j in 1:g){ B <- B+pj[j]*((meanj-meanov%*%rep(1,g))%*%t(meanj-meanov%*%rep(1,g))) W <- W+pj[j]*cv[[j]] } l <- min(g-1,p) B.svd <- svd(B) l1 <- length(B.svd$d>1e-6) B12 <- B.svd$u[, 1:l1] %*% diag(sqrt(B.svd$d[1:l1])) %*% t(B.svd$u[, 1:l1]) Bm12 <- B.svd$u[, 1:l1] %*% diag(1/sqrt(B.svd$d[1:l1])) %*% t(B.svd$u[, 1:l1]) K <- eigen(B12 %*% solve(W) %*% t(B12)) l2 <- min(g - 1, p) l <- min(length(K$val>1e-6),l2) Vs <- Bm12%*%K$vec[,1:l] V <- t(t(Vs)/(sqrt(diag(t(Vs)%*%W%*%Vs)))) fs <- matrix(NA,nrow=n,ncol=g) dimnames(fs)[[2]] <- glev for (j in 1:g){ xc <- scale(x,meanj[,j],scale=FALSE) xproj <- xc%*%V fs[,j] <- sqrt(apply(xproj^2,1,sum)-2*log(pj[j])) } grppred <- glev[apply(fs, 1, which.min)] mc <- table(grp, grppred) mc <- mc[, matchClasses(mc, method = "exact")] rate <- 1 - sum(diag(mc)) / sum(mc) fdiscr <- scale(x,meanov,FALSE)%*%V[,1:2] if(plotScore){ proj <- data.frame(fdiscr) proj$grp <- as.factor(grp) proj$grppred <- as.factor(grppred) firstscores <- NULL secondscores <- NULL colnames(proj) <- c("firstscores", "secondscores","grp", "grppred") gg <- ggplot(proj, aes(firstscores, secondscores, colour = grp, shape = grppred)) gg <- gg + geom_point() gg <- gg + xlab("First Fisher scores") + ylab("Second Fisher scores") print(gg) } res <- list(B = B, W = W, loadings = V, scores = fs, mc = mc, mcrate = rate, coda=coda, grp=grp, grppred=grppred, xc=xc, meanj=meanj, cv=cv, pj=pj, meanov=meanov, fdiscr = fdiscr) class(res) <- "daFisher" res } print.daFisher <- function(x,...){ cat("--------------------------------------") cat("\nResults from Fishers discriminant analysis, coda ==", x$coda) cat("\n- Variance between the classes: \n") print(x$B) cat("\n- Variance within the classes: \n") print(x$W) cat("\n- Loadings matrix: \n") print(x$load) cat("--------------------------------------\n") } predict.daFisher <- function(object, ..., newdata){ g <- ncol(object$meanj) if (object$coda){ newdata <- pivotCoord(newdata) } fs <- matrix(NA,nrow=nrow(newdata),ncol=g) dimnames(fs)[[2]] <- dimnames(object$mc)[[1]] for (j in 1:g){ xc <- scale(newdata,object$meanj[,j],scale=FALSE) xproj <- xc%*%object$loadings fs[,j] <- sqrt(apply(xproj^2,1,sum)-2*log(object$pj[j])) } grp <- apply(fs, 1, which.min) grpnam <- colnames(fs)[grp] list(grpnam=grpnam,grp=grp) } summary.daFisher <- function(object, ...){ cat("--------------------------------------") cat("\nMisclassification rate from Fishers discriminant analysis, coda ==", object$coda) cat("\n") print(object$mcrate) cat("\n--------------------------------------") cat("\nMisclassifications from Fishers discriminant analysis, coda ==", object$coda) cat("\n") print(object$mc) cat("\n--------------------------------------\n") }
markerSimParametric = function(kappa = NULL, delta = NULL, states = NULL, N = 1, alleles = NULL, afreq = NULL, seed = NULL, returnValue = c("singletons", "alleles", "genotypes", "internal")) { if(!is.null(seed)) set.seed(seed) afreq = fixAllelesAndFreqs(alleles, afreq) alleles = names(afreq) .a = sample(alleles, size = N, replace = TRUE, prob = afreq) .b = sample(alleles, size = N, replace = TRUE, prob = afreq) .c = sample(alleles, size = N, replace = TRUE, prob = afreq) .d = sample(alleles, size = N, replace = TRUE, prob = afreq) useKappa = !is.null(kappa) useDelta = !is.null(delta) useStates = !is.null(states) if(useKappa + useDelta + useStates != 1) stop2("Exactly one of `kappa`, `delta`, `states` must be different from NULL") if(useKappa) states = sample(9:7, size = N, replace = TRUE, prob = kappa) else if(useDelta) states = sample(1:9, size = N, replace = TRUE, prob = delta) else if(length(states) == 1) states = rep_len(states, N) else if(length(states) != N) stop2("`states` must have length 1 or ", N) S1 = states == 1 .b[S1] = .c[S1] = .d[S1] = .a[S1] S2 = states == 2 .b[S2] = .a[S2] .d[S2] = .c[S2] S3 = states == 3 .b[S3] = .c[S3] = .a[S3] S4 = states == 4 .b[S4] = .a[S4] S5 = states == 5 .c[S5] = .d[S5] = .a[S5] S6 = states == 6 .d[S6] = .c[S6] S7 = states == 7 .c[S7] = .a[S7] .d[S7] = .b[S7] S8 = states == 8 .c[S8] = .a[S8] switch(match.arg(returnValue), singletons = setMarkers(x = list(singleton(1), singleton(2)), alleleMatrix = matrix(rbind(.a, .c, .b, .d), nrow = 2, dimnames = list(1:2, NULL)), locusAttributes = list(afreq = afreq)), genotypes = list(paste(.a, .b, sep="/"), paste(.c, .d, sep="/")), alleles = list(a = .a, b = .b, c = .c, d = .d), internal = list(a = match(.a, alleles), b = match(.b, alleles), c = match(.c, alleles), d = match(.d, alleles))) } profileSimParametric = function(kappa = NULL, delta = NULL, states = NULL, N = 1, freqList = NULL, seed = NULL, returnValue = c("singletons", "alleles", "genotypes", "internal")) { if(!is.null(seed)) set.seed(seed) returnValue = match.arg(returnValue) retval0 = if(returnValue %in% c("singletons", "genotypes")) "alleles" else returnValue sims_markerwise = lapply(seq_along(freqList), function(i) { markeri = markerSimParametric(kappa = kappa, delta = delta, states = states[i], N = N, afreq = freqList[[i]], returnValue = retval0) do.call(rbind, markeri) }) sims = lapply(1:N, function(i) vapply(sims_markerwise, function(locsim) locsim[, i], FUN.VALUE = if(returnValue == "internal") integer(4) else character(4))) switch(returnValue, singletons = lapply(sims, function(s) setMarkers(list(singleton(1), singleton(2)), alleleMatrix = matrix(s[c(1,3,2,4), ], nrow = 2, dimnames = list(1:2, NULL)), locusAttributes = freqList)), genotypes = lapply(sims, function(s) list(paste(s[1,], s[2,], sep = "/"), paste(s[3,], s[4,], sep = "/"))), alleles =, internal = lapply(sims, function(s) list(a = s[1,], b = s[2,], c = s[3,], d = s[4,]))) }
context("test-assign_directory") test_that("canAssignDirectory", { tdata <- system.file("testdata", "test_dllist.Rdata", package = "binman") load(tdata) expect_silent(assign_directory(test_dllist, "myapp")) })
set.lcgseed <- function(seed = 4711) { setRmetricsOptions(lcg.seed = seed) } get.lcgseed <- function() { getRmetricsOptions("lcg.seed") } runif.lcg <- function(n, min = 0, max = 1) { r.lcg = rep(0, times = n) a = 13445 c = 0 m = 2^31-1 for (i in 1:n) { lcg.seed <- getRmetricsOptions("lcg.seed") setRmetricsOptions(lcg.seed = (a * lcg.seed + c) %% m) r.lcg[i] = getRmetricsOptions("lcg.seed") / m } r.lcg = (max-min)*r.lcg + min r.lcg } rnorm.lcg <- function(n, mean = 0, sd = 1) { (qnorm(runif.lcg(n = n, min = 0, max = 1)) - mean)/sd^2 } rt.lcg <- function(n, df) { qt(runif.lcg(n = n, min = 0, max = 1), df = df) }
mdl_config <- function(con = mdl_get_connection() ) { ret <- tbl(con, "mdl_config") %>% collect() class(ret) <- c("mdl_config", class(ret)) ret }
RealizedEst=function(RV=RV, JV=NULL){ if (length(JV) == 0){ n=length(RV) hi.cond.function.NJ=function(theta_tau, h, iv){ theta_tau[1]+theta_tau[3]*h+theta_tau[2]*iv } ineqn.NJ=function(theta_tau){ omega_g=theta_tau[1]; alpha_g=theta_tau[2]; gamma=theta_tau[3] z1=alpha_g+gamma return(c(z1)) } likelihood.function.LH.NJ=function(theta_tau){ omega_g=theta_tau[1]; alpha_g=theta_tau[2]; gamma=theta_tau[3] hi=omega_g/(1-alpha_g-gamma) likelihood=log(hi)+RV[1]/hi for (i in 2:n){ hi=hi.cond.function.NJ(theta_tau, hi, RV[i-1]) likelihood=likelihood+log(hi)+RV[i]/hi } return(likelihood) } thetaLH=Rsolnp::solnp(c(mean(RV),0.45,0.3),fun=likelihood.function.LH.NJ,ineqfun=ineqn.NJ,ineqLB=c(0),ineqUB=c(1), LB=rep(0,3),UB=rep(1,3))$par names(thetaLH)=c("omega_g", "alpha_g", "gamma") hiLH=rep(0,n+1); hiLH[1]=thetaLH[1]/(1-thetaLH[2]-thetaLH[3]) for (i in 2:(n+1)){ hiLH[i]=hi.cond.function.NJ(thetaLH, hiLH[i-1], RV[i-1]) } return(list("coefficients"=thetaLH, "sigma"=hiLH[1:n], "pred"=hiLH[n+1])) } else { if (length(RV) != length(JV)){ stop("realized volatility and jump variation series should be of equal length") } if (length(which(RV<0)) != 0){ stop("realized volatility should be non-negative") } if (length(which(JV<0)) != 0){ stop("jump variation should be non-negative") } n=length(RV) hi.cond.function=function(theta_tau, h, iv, jv){ theta_tau[1]+theta_tau[4]*h+theta_tau[2]*iv+theta_tau[3]*jv } ineqn=function(theta_tau){ omega_g=theta_tau[1]; alpha_g=theta_tau[2]; beta_g=theta_tau[3]; gamma=theta_tau[4] z1=alpha_g+gamma return(c(z1)) } likelihood.function.LH=function(theta_tau){ omega_g=theta_tau[1]; alpha_g=theta_tau[2]; beta_g=theta_tau[3]; gamma=theta_tau[4] hi=(omega_g+beta_g*stats::median(JV))/(1-alpha_g-gamma) likelihood=log(hi)+RV[1]/hi for (i in 2:n){ hi=hi.cond.function(theta_tau, hi, RV[i-1], JV[i-1]) likelihood=likelihood+log(hi)+RV[i]/hi } return(likelihood) } thetaLH=Rsolnp::solnp(c(mean(RV),0.45,0.5,0.3),fun=likelihood.function.LH,ineqfun=ineqn,ineqLB=c(0),ineqUB=c(1), LB=c(0,0,0,0),UB=c(1,1,10,1))$par names(thetaLH)=c("omega_g", "alpha_g", "beta_g", "gamma") hiLH=rep(0,n+1); hiLH[1]=(thetaLH[1]+thetaLH[3]*stats::median(JV))/(1-thetaLH[2]-thetaLH[4]) for (i in 2:(n+1)){ hiLH[i]=hi.cond.function(thetaLH, hiLH[i-1], RV[i-1], JV[i-1]) } return(list("coefficients"=thetaLH, "sigma"=hiLH[1:n], "pred"=hiLH[n+1])) } }
oldsvyquantile<-function(x,design,quantiles,...) UseMethod("oldsvyquantile", design) oldsvyquantile.survey.design<-function(x,design,quantiles,alpha=0.05, ci=FALSE, method="linear",f=1, interval.type=c("Wald","score","betaWald"), na.rm=FALSE,se=ci, ties=c("discrete","rounded"), df=NULL,...){ if (inherits(x,"formula")) x<-model.frame(x ,model.frame(design), na.action=na.pass) else if(typeof(x) %in% c("expression","symbol")) x<-eval(x, model.frame(design,na.action=na.pass)) if (na.rm){ nas<-rowSums(is.na(x)) design<-design[nas==0,] if (length(nas)>length(design$prob)) x<-x[nas==0,,drop=FALSE] else x[nas>0,]<-0 } w<-weights(design) epsilon<-0.1*min(w[w>0])/sum(w) if (is.null(df)){ qcrit<-function(p, lower.tail=TRUE) qt(p, df=degf(design), lower.tail=lower.tail) } else if(df==Inf){ qcrit <- function(p,lower.tail=TRUE) qnorm(p,lower.tail=lower.tail) } else { qcrit <- function(p,lower.tail=TRUE) qt(p,df=df,lower.tail=lower.tail) } computeQuantiles<-function(xx,p=quantiles){ if (any(is.na(x))) return(NA*p) oo<-order(xx) cum.w<-cumsum(w[oo])/sum(w) cdf<-approxfun(cum.w,xx[oo],method=method,f=f, yleft=min(xx),yright=max(xx),ties=min) cdf(p) } computeQuantilesRounded<-function(xx,p=quantiles){ if (any(is.na(xx))) return(NA*p) ww<-rowsum(w,xx,reorder=TRUE) xx<-sort(unique(xx)) cum.w <- cumsum(ww)/sum(ww) cdf <- approxfun(cum.w, xx, method = method, f = f, yleft = min(xx), yright = max(xx),ties=min) cdf(p) } computeScoreCI<-function(xx,p){ if (any(is.na(xx))) return(c(NA,NA)) U<-function(theta){ ((xx>theta)-(1-p))} scoretest<-function(theta,qlimit){ umean<-svymean(U(theta),design) umean/sqrt(attr(umean,"var"))-qlimit } iqr<-IQR(xx) lower<-min(xx)+iqr/100 upper<-max(xx)-iqr/100 tol<-1/(100*sqrt(nrow(design))) c(uniroot(scoretest,interval=c(lower,upper), qlimit=qcrit(alpha/2,lower.tail=FALSE),tol=tol)$root, uniroot(scoretest,interval=c(lower,upper), qlimit=qcrit(alpha/2,lower.tail=TRUE),tol=tol)$root) } computePCI<-function(se,alpha,p){ if (interval.type=="Wald"){ p.up<-p+qcrit(alpha/2,lower.tail=FALSE)*se p.low<-p+qcrit(alpha/2,lower.tail=TRUE)*se c(p.low,p.up) } else if (interval.type=="betaWald"){ n.eff <- (p*(1-p))/(se^2) n.eff <- n.eff * ( qt(alpha/2, nrow(design)-1)/qt(alpha/2, degf(design)) )^2 p.up<-qbeta(1-alpha/2, n.eff*p+1, n.eff*(1-p)) p.low<-qbeta(alpha/2, n.eff*p, n.eff*(1-p)+1) c(p.low,p.up) } } computeWaldCI<-function(xx,p){ if (any(is.na(xx))) return(c(NA,NA)) theta0<-computeQuantiles(xx,p) U<- ((xx>theta0)-(1-p)) wtest<-svymean(U,design) p.ci<-computePCI(SE(wtest),alpha,p) p.low<-p.ci[1] p.up<-p.ci[2] oo<-order(xx) cum.w<-cumsum(w[oo])/sum(w) approx(cum.w,xx[oo],xout=c(p.low,p.up), method=method,f=f, yleft=min(xx),yright=max(xx),ties=min)$y } computeWaldCIRounded<-function(xx,p){ if(any(is.na(xx))) return(c(NA,NA)) theta0<-computeQuantilesRounded(xx,p) U<- ((xx>theta0)-(1-p)) ww<-rowsum(w,xx, reorder=TRUE) uxx <- sort(unique(xx)) wtest<-svymean(U,design) p.ci<-computePCI(SE(wtest),alpha,p) p.low<-p.ci[1] p.up<-p.ci[2] oo<-order(xx) cum.w<-cumsum(ww)/sum(ww) approx(cum.w,uxx,xout=c(p.low,p.up), method=method,f=f, yleft=min(xx),yright=max(xx),ties=min)$y } ties<-match.arg(ties) computeQ<-switch(ties, discrete=computeQuantiles,rounded=computeQuantilesRounded) if (!is.null(dim(x))) rval<-t(matrix(apply(x,2,computeQ),nrow=length(quantiles), dimnames=list(as.character(round(quantiles,2)),colnames(x)))) else rval<-computeQ(x) if (!ci & !se) return(rval) interval.type<-match.arg(interval.type) computeCI<-switch(paste(interval.type,ties,sep="."), score.discrete=computeScoreCI, score.rounded=stop("ties=\"rounded\" not available with interval.type=\"score\""), Wald.rounded=computeWaldCIRounded, betaWald.rounded=computeWaldCIRounded, Wald.discrete=computeWaldCI, betaWald.discrete=computeWaldCI) if (!is.null(dim(x))) cis<-array(apply(x,2,function(xx) sapply(quantiles,function(qq) computeCI(xx,qq))), dim=c(2,length(quantiles),ncol(x)), dimnames=list(c("(lower","upper)"), as.character(round(quantiles,2)), colnames(x))) else cis<-sapply(quantiles, function(qq) computeCI(x,qq)) if (ci) rval<-list(quantiles=rval,CIs=cis) else rval<-list(quantiles=rval) if (is.null(dim(x))) ses<-(cis[2,]-cis[1,])/(2*qcrit(alpha/2,lower.tail=FALSE)) else ses<-(cis[2,,]-cis[1,,])/(2*qcrit(alpha/2,lower.tail=FALSE)) attr(rval,"SE")<-ses class(rval)<-c("oldsvyquantile","svyquantile") rval } oldsvyquantile.svyrep.design<-function(x,design,quantiles,method="linear", interval.type=c("probability","quantile"),f=1, return.replicates=FALSE, ties=c("discrete","rounded"),na.rm=FALSE, alpha=0.05,df=NULL,...){ if (!exists(".Generic",inherits=FALSE)) .Deprecated("svyquantile") ties<-match.arg(ties) interval<-match.arg(interval.type) if (design$type %in% c("JK1","JKn") && interval=="quantile") warning("Jackknife replicate weights may not give valid standard errors for quantiles") if (design$type %in% "other" && interval=="quantile") warning("Not all replicate weight designs give valid standard errors for quantiles.") if (inherits(x,"formula")) x<-model.frame(x,design$variables,na.action=if(na.rm) na.pass else na.fail) else if(typeof(x) %in% c("expression","symbol")) x<-eval(x, design$variables) if (na.rm){ nas<-rowSums(is.na(x)) design<-design[nas==0,] if (length(nas)>length(design$prob)) x<-x[nas==0,,drop=FALSE] else x[nas>0,]<-0 } if (NROW(x)<=1){ rval<-matrix(rep(as.matrix(x),length(quantiles)),ncol=NCOL(x),nrow=length(quantiles),byrow=TRUE) dimnames(rval)<-list(paste("q",round(quantiles,2),sep=""), names(x)) if (getOption("survey.drop.replicates") && !is.null(design$selfrep) && all(design$selfrep)) vv<-matrix(0,ncol=NCOL(x),nrow=length(quantiles)) else vv<-matrix(NA,ncol=NCOL(x),nrow=length(quantiles)) dimnames(vv)<-list(paste("q",round(quantiles,2),sep=""), names(x)) attr(rval,"var")<-vv attr(rval,"statistic")<-quantiles if (return.replicates) rval<-list(mean=rval,replicates=NULL) class(rval)<-"svrepstat" return(rval) } if (is.null(df)) df<-degf(design) if (df==Inf) qcrit<-qnorm else qcrit <-function(...) qt(...,df=df) w<-weights(design,"analysis") if (interval=="quantile"){ if (ties=="discrete") computeQuantiles<-function(xx){ oo<-order(xx) ws<-weights(design,"sampling") epsilon<-0.1*min(ws[ws>0])/sum(ws) cum.ws<-cumsum(ws[oo])/sum(ws) rval<-approx(cum.ws,xx[oo],method=method,f=f, yleft=min(xx),yright=max(xx), xout=quantiles,ties=min)$y cum.w<-apply(w,2,function(wi) cumsum(wi[oo])/sum(wi)) qq<-apply(cum.w, 2, function(cum.wi){ approx(cum.wi,xx[oo],method=method,f=f, yleft=min(xx),yright=max(xx), xout=quantiles,ties=min)$y } ) if (length(quantiles)>1) qq<-t(qq) else qq<-as.matrix(qq) rval<-list(quantiles=rval, variances=diag(as.matrix(svrVar(qq,design$scale,design$rscales,mse=design$mse,coef=rval)))) if (return.replicates) rval<-c(rval, list(replicates=qq)) rval } else { computeQuantiles<-function(xx){ ws<-weights(design,"sampling") epsilon<-0.1*min(ws[ws>0])/sum(ws) wws<-rowsum(ws,xx,reorder=TRUE) uxx<-sort(unique(xx)) cum.wws<-cumsum(wws)/sum(wws) rval<-approx(cum.wws,uxx,method=method,f=f, yleft=min(xx),yright=max(xx), xout=quantiles,ties=min)$y cum.w<-apply(rowsum(w,xx,reorder=TRUE),2,function(wi) cumsum(wi)/sum(wi)) qq<-apply(cum.w, 2, function(cum.wi){ approx(cum.wi,uxx,method=method,f=f, yleft=min(xx),yright=max(xx), xout=quantiles,ties=min)$y } ) if (length(quantiles)>1) qq<-t(qq) else qq<-as.matrix(qq) rval<-list(quantiles=rval, variances=diag(as.matrix(svrVar(qq,design$scale,design$rscales,mse=design$mse,coef=rval)))) if (return.replicates) rval<-c(rval, list(replicates=qq)) rval } } } else { if (ties=="discrete"){ computeQuantiles<-function(xx){ oo<-order(xx) w<-weights(design,"sampling") epsilon<-0.1*min(w[w>0])/sum(w) cum.w<- cumsum(w[oo])/sum(w) Qf<-approxfun(cum.w,xx[oo],method=method,f=f, yleft=min(xx),yright=max(xx), ties=min) point.estimates<-Qf(quantiles) if(length(quantiles)==1) estfun<-as.numeric(xx<point.estimates) else estfun<-0+outer(xx,point.estimates,"<") est<-svymean(estfun,design, return.replicates=return.replicates) if (return.replicates) q.estimates<-matrix(Qf(est$replicates),nrow=NROW(est$replicates)) zcrit<-abs(qcrit(min(alpha,1-alpha)/2)) ci<-matrix(Qf(c(coef(est)+zcrit*SE(est), coef(est)-zcrit*SE(est))),ncol=2) variances<-((ci[,1]-ci[,2])/2/zcrit)^2 rval<-list(quantiles=point.estimates, variances=variances) if (return.replicates) rval<-c(rval, list(replicates=q.estimates)) rval } } else { computeQuantiles<-function(xx){ w<-weights(design,"sampling") epsilon<-0.1*min(w[w>0])/sum(w) ww<-rowsum(w,xx,reorder=TRUE) uxx<-sort(unique(xx)) cum.w<- cumsum(ww)/sum(ww) Qf<-approxfun(cum.w,uxx,method=method,f=f, yleft=min(xx),yright=max(xx), ties=min) point.estimates<-Qf(quantiles) if(length(quantiles)==1) estfun<-as.numeric(xx<point.estimates) else estfun<-0+outer(xx,point.estimates,"<") est<-svymean(estfun, design, return.replicates=return.replicates) if (return.replicates) q.estimates<-matrix(Qf(est$replicates),nrow=NROW(est$replicates)) zcrit<-abs(qcrit(min(alpha,1-alpha)/2)) ci<-matrix(Qf(c(coef(est)+zcrit*SE(est), coef(est)-zcrit*SE(est))),ncol=2) variances<-((ci[,1]-ci[,2])/2/zcrit)^2 rval<-list(quantiles=point.estimates, variances=variances) if (return.replicates) rval<-c(rval, list(replicates=q.estimates)) rval } } } if (!is.null(dim(x))) results<-apply(x,2,computeQuantiles) else results<-computeQuantiles(x) rval<-matrix(sapply(results,"[[","quantiles"),ncol=NCOL(x),nrow=length(quantiles), dimnames=list(paste("q",round(quantiles,2),sep=""), names(x))) vv<-matrix(sapply(results,"[[","variances"),ncol=NCOL(x),nrow=length(quantiles), dimnames=list(paste("q",round(quantiles,2),sep=""), names(x))) attr(rval,"var")<-vv attr(rval, "statistic")<-"quantiles" if (return.replicates) { reps<-do.call(cbind,lapply(results,"[[","replicates")) attr(reps,"scale")<-design$scale attr(reps,"rscales")<-design$rscales attr(reps,"mse")<-design$mse rval<-list(mean=rval, replicates=reps) } class(rval)<-"svrepstat" rval } SE.oldsvyquantile<-function(object,...){ attr(object,"SE") } vcov.oldsvyquantile<-function(object,...){ se<-SE(object) if (is.null(se)) stop("no uncertainty information present") v<-matrix(NA,length(se),length(se)) warning("Only diagonal of vcov() available") diag(v)<-se v } coef.oldsvyquantile<-function(object,...){ rval<-as.vector(object$quantiles) if(ncol(object$quantiles)==1) names(rval)<-rownames(object$quantiles) else if (nrow(object$quantiles)==1) names(rval)<-colnames(object$quantiles) else names(rval)<-t(outer(colnames(object$quantiles), rownames(object$quantiles), paste,sep=":")) rval } print.oldsvyquantile<-function(x,...){ print(list(quantiles=x$quantiles, CIs=x$CIs)) } confint.oldsvyquantile<-function(object,parm=NULL,level=NULL,...){ if (!is.null(level)) stop("need to re-run svyquantile to specify level") ci<-t(matrix(as.vector(object$CIs),nrow=2)) colnames(ci)<-dimnames(object$CIs)[[1]] rownames(ci)<-outer(dimnames(object$CIs)[[2]], dimnames(object$CIs)[[3]],paste,sep="_") if (is.null(parm)) ci else ci[parm,,drop=FALSE] }
summary.TrialLevelIT <- function(object, ..., Object){ if (missing(Object)){Object <- object} cat("\nFunction call:\n\n") print(Object$Call) cat("\n\n cat("\n cat("\nTotal number of trials: ", Object$N.Trial) cat("\n\n\n cat("\n cat("\n") print(format(round(Object$R2.ht, 4), nsmall = 4)) }
plugInLMM <- function(YS, fixed.part, random.part, reg, con, weights, backTrans, thetaFun){ model <- formula(paste('YS', '~', fixed.part, '+', random.part)) regS <- subset(reg, con == 1) regR <- subset(reg, con == 0) if (is.null(weights)) { weights <- rep(1, nrow(reg)) weightS <- rep(1, nrow(regS))} else { weightS <- subset(weights, con == 1)} mEst <- lmer(model, weights = weightS, data.frame(YS, regS, weightS)) tst <- unlist(apply((as.matrix(reg[,names(ranef(mEst))])),2,unique)) if ((length(tst[duplicated(tst)])) > 0) {stop(paste("There are at least two 'random.part' variables with at least one the same value. Rename the values of 'random.part' variables - you can use qape::modifyDataset"))} Zobj <- Zfun(model, reg) Z <- Zobj$Z ZBlockNames <- Zobj$ZBlockNames vNames <- make.unique(Zfun(model, reg)$vNames,sep = ".") colnames(Z) <- vNames X <- model.matrix(formula(paste('~', fixed.part)), reg) ZS <- getME(mEst, name = "Z") vSNames <- make.unique(colnames(ZS),sep = ".") colnames(ZS) <- vSNames ZR <- Z[(con == 0),vSNames] beta <- mEst@beta Xbeta <- X %*% beta XS <- getME(mEst, name = 'X') vS <- as.vector(getME(mEst, name = "b")) vSDF <- data.frame(vSNames, vS) eS <- residuals(mEst) XR <- model.matrix(formula(paste('~', fixed.part)), regR) sigma2R <- sigma(mEst)^2 R <- diag(sigma2R/weightS, nrow = nrow(regS), ncol = nrow(regS)) G <- sigma(mEst)^2 * crossprod(getME(mEst,"Lambdat")) Y <- rep(NA,nrow(reg)) Y[con == 1] <- YS YP <- Y[con == 0] <- XR %*% beta + ZR %*% vS if (is.null(backTrans)) YbackTrans <- Y else YbackTrans <- backTrans(Y) if (is.null(backTrans)) YPbackTrans <- YP else YPbackTrans <- backTrans(YP) thetaP <- thetaFun(YbackTrans) outl <- list( fixed.part = fixed.part, random.part = random.part, thetaP = thetaP, beta = beta, Xbeta = Xbeta, sigma2R = sigma2R, R = R, G = G, model = model, mEst = mEst, YS = YS, reg = reg, con = con, regS = regS, regR = regR, weights = weights, weightS = weightS, Z = Z, ZBlockNames = ZBlockNames, X = X, ZS = ZS, XR = XR, ZR = ZR, eS = eS, vS = vSDF, thetaFun = thetaFun, backTrans = backTrans) class(outl) = "plugInLMM" return(outl) }
marginal_effects.multinom <- function(model, data = find_data(model, parent.frame()), variables = NULL, type = NULL, eps = 1e-7, varslist = NULL, as.data.frame = TRUE, ...) { if (is.null(varslist)) { varslist <- find_terms_in_model(model, variables = variables) } out1 <- lapply(c(varslist$nnames, varslist$lnames), dydx, data = data, model = model, type = NULL, eps = eps, as.data.frame = as.data.frame, ...) out2 <- list() for (i in seq_along(varslist$fnames)) { out2[[i]] <- dydx.factor(data = data, model = model, varslist$fnames[i], fwrap = FALSE, type = NULL, as.data.frame = as.data.frame, ...) } out <- c(out1, out2) if (isTRUE(as.data.frame)) { out <- do.call("cbind.data.frame", out[vapply(out, function(x) length(x) > 0, FUN.VALUE = logical(1))]) } else { out <- do.call("cbind", out[vapply(out, function(x) length(x) > 0, FUN.VALUE = logical(1))]) } return(out) }
test_that("Classes", { expect_equal(class(style_underline("foo")), c("cli_ansi_string", "ansi_string", "character")) }) test_that("Coloring and highlighting works", { local_reproducible_output(crayon = TRUE) expect_equal(c(style_underline("foo")), "\u001b[4mfoo\u001b[24m") expect_equal(c(col_red("foo")), "\u001b[31mfoo\u001b[39m") expect_equal(c(bg_red("foo")), "\u001b[41mfoo\u001b[49m") }) test_that("Applying multiple styles at once works", { local_reproducible_output(crayon = TRUE) st <- combine_ansi_styles(col_red, bg_green, "underline") expect_equal( c(st("foo")), "\u001b[31m\u001b[42m\u001b[4mfoo\u001b[24m\u001b[49m\u001b[39m") st <- combine_ansi_styles(style_underline, "red", bg_green) expect_equal( c(st("foo")), "\u001b[4m\u001b[31m\u001b[42mfoo\u001b[49m\u001b[39m\u001b[24m") }) test_that("Nested styles are supported", { local_reproducible_output(crayon = TRUE) st <- combine_ansi_styles(style_underline, bg_blue) expect_equal( c(col_red("foo", st("bar"), "!")), "\u001b[31mfoo\u001b[4m\u001b[44mbar\u001b[49m\u001b[24m!\u001b[39m") }) test_that("Nested styles of the same type are supported", { local_reproducible_output(crayon = TRUE) expect_equal( c(col_red("a", col_blue("b", col_green("c"), "b"), "c")), "\u001b[31ma\u001b[34mb\u001b[32mc\u001b[34mb\u001b[31mc\u001b[39m") }) test_that("Reset all styles", { local_reproducible_output(crayon = TRUE) st <- combine_ansi_styles("red", bg_green, "underline") ok <- c( paste0( "\033[0m\033[31m\033[42m\033[4mfoo\033[24m\033[49m\033[39m", "foo\033[0m\033[22m\033[23m\033[24m\033[27m\033[28m", "\033[29m\033[39m\033[49m"), paste0("\u001b[0m\u001b[31m\u001b[42m\u001b[4mfoo\u001b[24m\u001b[49m", "\u001b[39mfoo\u001b[0m") ) expect_true(style_reset(st("foo"), "foo") %in% ok) }) test_that("Variable number of arguments", { local_reproducible_output(crayon = TRUE) expect_equal(c(col_red("foo", "bar")), "\u001b[31mfoobar\u001b[39m") })
outlier_labeler <- function(x, standardize = TRUE, ...){ if (standardize) { x <- scale(x, ...) } ifelse(abs(x) >= 3, "3sd", ifelse(abs(x) >= 2 & abs(x) < 3, "2sd", ifelse(abs(x) >= 1.5 & abs(x) < 2, "1.5sd", "-"))) }
ggPieDonut=function(data,mapping, addPieLabel=TRUE,addDonutLabel=TRUE, showRatioDonut=TRUE,showRatioPie=TRUE, showRatioPieAbove10=TRUE,title="", labelposition=1, polar=TRUE, use.label=TRUE,use.labels=TRUE, interactive=FALSE){ (cols=colnames(data)) if(use.labels) data=addLabelDf(data,mapping) count<-NULL if("y" %in% names(mapping)){ count<-getMapping(mapping,"y") } else { if("count" %in% names(mapping)) count<-getMapping(mapping,"count") } count (pies=getMapping(mapping,"pies")) (donuts=getMapping(mapping,"donuts")) if((length(pies)+length(donuts))!=2){ (xvar=getMapping(mapping,"x")) if(length(xvar)>1) { pies=xvar[1] donuts=xvar[2] } } if((length(pies)+length(donuts))==1) { if(is.null(pies)) { p<-ggDonut(data,mapping,addDonutLabel=addDonutLabel, showRatio=showRatioDonut,title=title, labelposition=labelposition, polar=polar,interactive=interactive) } else { p<-ggPie(data,mapping,title=title, addPieLabel=addPieLabel,showRatioPie=showRatioPie, showRatioPieAbove10=showRatioPieAbove10, labelposition=labelposition, polar=polar,interactive=interactive) } } else { if(is.null(count)){ dat1=ddply(data,c(pies,donuts),nrow) colnames(dat1)[3]="n" dat1$ymax=cumsum(dat1$n) dat1$ymin=cumsum(dat1$n)-dat1$n dat1$ypos=dat1$ymin+dat1$n/2 dat1$ratio=dat1$n*100/sum(dat1$n) dat1$cumratio=dat1$ypos*100/sum(dat1$n) dat1$hjust=ifelse((dat1$cumratio>25 & dat1$cumratio<75),0,1) dat1$label=paste0(dat1[[pies]],'<br>',dat1[[donuts]],"<br>",dat1$n,"(",round(dat1$ratio,1),"%)") data2=ddply(data,pies,nrow) colnames(data2)[2]="sum" data2$cumsum=cumsum(data2$sum) data2$pos=data2$cumsum-data2$sum/2 data2$ymin=data2$cumsum-data2$sum data2$ratio=data2$sum*100/sum(data2$sum) data2$label=ifelse(data2$ratio>10, paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) data2$tooltip=paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)") } else{ dat1=data colnames(dat1)[colnames(dat1)==count]="n" dat1$ymax=cumsum(dat1$n) dat1$ymin=cumsum(dat1$n)-dat1$n dat1$ypos=dat1$ymin+dat1$n/2 dat1$ratio=dat1$n*100/sum(dat1$n) dat1$cumratio=dat1$ypos*100/sum(dat1$n) dat1$hjust=ifelse((dat1$cumratio>25 & dat1$cumratio<75),0,1) dat1$label=paste0(dat1[[pies]],"<br>",dat1[[donuts]],"<br>",dat1$n,"(",round(dat1$ratio,1),"%)") dat1 pies data2=eval(parse(text="ddply(dat1,pies,summarize,sum(n))")) data2 colnames(data2)[2]="sum" data2=data2[order(data2$sum,decreasing=TRUE),] data2$cumsum=cumsum(data2$sum) data2$pos=data2$cumsum-data2$sum/2 data2$ymin=data2$cumsum-data2$sum data2$ratio=data2$sum*100/sum(data2$sum) data2$label=ifelse(data2$ratio>10, paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) data2$tooltip=paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)") } mainCol=rainbow(nrow(data2)) subCol=subcolors(dat1,pies,mainCol) p<-ggplot(dat1) + geom_rect_interactive(aes_string( ymax="ymax", ymin="ymin", xmax="4", xmin="3", tooltip="label",data_id=donuts),fill=subCol,colour="white") p<-p+ geom_rect_interactive(aes_string(ymax="cumsum", ymin="ymin", xmax="3", xmin="0", tooltip="tooltip",data_id=pies),data=data2, fill=mainCol,colour="white",alpha=0.7) p<-p+ theme_clean() if(addDonutLabel) { label2=dat1[[donuts]] if(showRatioDonut) label2=paste0(label2,"\n(",round(dat1$ratio,1),"%)") if(polar){ if(labelposition==1) { p<- p+ geom_text(aes_string(label="label2",x="4.3",y="ypos",hjust="hjust"),size=3)+ geom_segment(aes_string(x="4",xend="4.2",y="ypos",yend="ypos")) } else{ p<- p+ geom_text(aes_string(label="label2",x="3.5",y="ypos"),size=3) } } else{ p<-p+ geom_text(aes_string(label="label2",x="3.5",y="ypos"),size=3) } } if(addPieLabel) { Pielabel=data2[[pies]] if(showRatioPie) { if(showRatioPieAbove10) { Pielabel=ifelse(data2$ratio>10, paste0(data2[[pies]],"\n(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) } else Pielabel=paste0(Pielabel,"\n(",round(data2$ratio,1),"%)") } p<-p+geom_text(data=data2,aes_string(label="Pielabel",x="1.5",y="pos"),size=4) } if(polar) p<-p+coord_polar(theta="y",start=3*pi/2) if(title!="") p<-p+ggtitle(title) if(use.label){ labels=c() for(i in 1:length(cols)) { temp=get_label(data[[cols[i]]]) labels=c(labels,ifelse(is.null(temp),cols[i],temp)) } labels p<-p+scale_x_discrete(labels=labels) } if(interactive) { tooltip_css <- "background-color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;" p<-girafe(ggobj=p) p<-girafe_options(p, opts_tooltip(css=tooltip_css,opacity=.75), opts_zoom(min=1,max=10)) } p } p } ggDonut=function(data,mapping, addDonutLabel=TRUE,showRatio=TRUE, polar=TRUE,labelposition=1,labelsize=3, title="", use.label=TRUE,use.labels=TRUE, alpha=0.7, interactive=FALSE,palette=NULL,reverse=FALSE, xmin=3,xmax=4, start=3*pi/2, direction=1, colour="white", explode=NULL, explodePos=0.5,...){ if(use.labels) data=addLabelDf(data,mapping) donuts<-count<-NULL if("y" %in% names(mapping)){ count<-getMapping(mapping,"y") } else { if("count" %in% names(mapping)) count<-getMapping(mapping,"count") } if("donuts" %in% names(mapping)) { donuts<-getMapping(mapping,"donuts") } else { if("x" %in% names(mapping)) donuts<-getMapping(mapping,"x") } if(is.null(count)){ dat1=ddply(data,donuts,nrow) colnames(dat1)[2]="n" } else{ dat1=data colnames(dat1)[colnames(dat1)==count]="n" } dat1$ymax=cumsum(dat1$n) dat1$ymin=cumsum(dat1$n)-dat1$n dat1$ypos=dat1$ymin+dat1$n/2 dat1$ratio=dat1$n*100/sum(dat1$n) dat1$cumratio=dat1$ypos*100/sum(dat1$n) dat1$hjust=ifelse((dat1$cumratio>25 & dat1$cumratio<75),0,1) dat1$label=paste0(dat1[[donuts]],"<br>",dat1$n,"(",round(dat1$ratio,1),"%)") dat1$xmax=xmax dat1$xmin=xmin if(!is.null(explode)) { if(is.numeric(explode)) explode=dat1[[donuts]][explode] dat1$xmax[dat1[[donuts]] %in% explode]=dat1$xmax[dat1[[donuts]] %in% explode]+explodePos dat1$xmin[dat1[[donuts]] %in% explode]=dat1$xmin[dat1[[donuts]] %in% explode]+explodePos } if(labelposition==1) { dat1$labelpos=dat1$xmax+0.3 dat1$segxstart=dat1$xmax dat1$segxend=dat1$xmax+0.2 } else { dat1$labelpos=dat1$xmax-0.5 } dat1 labelposition if(is.null(palette)) { mainCol=rainbow(nrow(dat1)) } else{ mycolors=palette2colors(palette,reverse=reverse) if(length(mycolors)<nrow(dat1)) { mycolors=rep(mycolors,nrow(dat1) %/% length(mycolors) + 1) } mainCol=mycolors[1:nrow(dat1)] } p<-ggplot(dat1) + geom_rect_interactive(aes_string( ymax="ymax", ymin="ymin", xmax="xmax", xmin="xmin", tooltip="label",data_id=donuts),fill=mainCol,alpha=alpha,colour=colour,...)+ coord_polar(theta="y",start=start, direction=direction)+ xlim(0,xmax+labelposition+ifelse(is.null(explode),0,max(0,explodePos)))+ theme_clean() donutlabel=dat1[[donuts]] if(showRatio) donutlabel=paste0(donutlabel,"\n(",round(dat1$ratio,1),"%)") if(labelposition==1) { p<- p+ geom_text(aes_string(label="donutlabel",x="labelpos",y="ypos",hjust="hjust"), size=labelsize)+ geom_segment(aes_string(x="segxstart",xend="segxend",y="ypos",yend="ypos")) } else{ p<- p+ geom_text(aes_string(label="donutlabel",x="labelpos",y="ypos"),size=labelsize) } if(title!="") p<-p+ggtitle(title) if(interactive) { tooltip_css <- "background-color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;" p<-girafe(ggobj=p) p<-girafe_options(p, opts_tooltip(css=tooltip_css,opacity=.75), opts_zoom(min=1,max=10)) } p } subcolors <- function(.dta,main,mainCol){ tmp_dta = cbind(.dta,1,'col') tmp1 = unique(.dta[[main]]) for (i in 1:length(tmp1)){ tmp_dta$"col"[.dta[[main]] == tmp1[i]] = mainCol[i] } u <- unlist(by(tmp_dta$"1",tmp_dta[[main]],cumsum)) n <- dim(.dta)[1] subcol=rep(rgb(0,0,0),n); for(i in 1:n){ t1 = col2rgb(tmp_dta$col[i])/256 subcol[i]=rgb(t1[1],t1[2],t1[3],1/(1+u[i])) } return(subcol); } ggPie=function(data,mapping, addPieLabel=TRUE,showRatioPie=TRUE, showRatioPieAbove10=TRUE,title="", labelposition=1, polar=TRUE, use.label=TRUE,use.labels=TRUE, interactive=FALSE){ (cols=colnames(data)) if(use.labels) data=addLabelDf(data,mapping) count<-NULL if("y" %in% names(mapping)){ count<-getMapping(mapping,"y") } else { if("count" %in% names(mapping)) count<-getMapping(mapping,"count") } (pies=getMapping(mapping,"pies")) if(is.null(pies)){ (xvar=getMapping(mapping,"x")) pies=xvar[1] } if(is.null(count)){ data2=ddply(data,pies,nrow) colnames(data2)[2]="sum" data2$cumsum=cumsum(data2$sum) data2$pos=data2$cumsum-data2$sum/2 data2$ymin=data2$cumsum-data2$sum data2$ratio=data2$sum*100/sum(data2$sum) data2$label=ifelse(data2$ratio>10, paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) data2$tooltip=paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)") } else{ data2=data[c(pies,count)] colnames(data2)[2]="sum" data2=ddply(data2,pies,summarize,sum=sum(sum)) data2 colnames(data2)[2]="sum" data2=data2[order(data2$sum,decreasing=TRUE),] data2 data2$cumsum=cumsum(data2$sum) data2$pos=data2$cumsum-data2$sum/2 data2$ymin=data2$cumsum-data2$sum data2$ratio=data2$sum*100/sum(data2$sum) data2$label=ifelse(data2$ratio>10, paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) data2$tooltip=paste0(data2[[pies]],"<br>",data2$sum,"(",round(data2$ratio,1),"%)") } mainCol=rainbow(nrow(data2)) p<-ggplot(data2) + geom_rect_interactive(aes_string(ymax="cumsum", ymin="ymin", xmax="3", xmin="0", tooltip="tooltip",data_id=pies), fill=mainCol,colour="white",alpha=0.7) p<-p+ theme_clean() if(addPieLabel) { Pielabel=data2[[pies]] if(showRatioPie) { if(showRatioPieAbove10) { Pielabel=ifelse(data2$ratio>10, paste0(data2[[pies]],"\n(",round(data2$ratio,1),"%)"), paste0(data2[[pies]])) } else Pielabel=paste0(Pielabel,"\n(",round(data2$ratio,1),"%)") } p<-p+geom_text(data=data2,aes_string(label="Pielabel",x="1.5",y="pos"),size=4) } if(polar) p<-p+coord_polar(theta="y",start=3*pi/2) if(title!="") p<-p+ggtitle(title) if(use.label){ labels=c() for(i in 1:length(cols)) { temp=get_label(data[[cols[i]]]) labels=c(labels,ifelse(is.null(temp),cols[i],temp)) } labels p<-p+scale_x_discrete(labels=labels) } if(interactive) { tooltip_css <- "background-color:white;font-style:italic;padding:10px;border-radius:10px 20px 10px 20px;" p<-girafe(ggobj=p) p<-girafe_options(p, opts_tooltip(css=tooltip_css,opacity=.75), opts_zoom(min=1,max=10)) } p }
omicdata <- function(file, backgrounddose, check = TRUE, norm.method = c("cyclicloess", "quantile", "scale", "none")) { warning(strwrap(prefix = "\n", initial = "\n", "omicdata() is a deprecated function that was replaced by microarraydata(). You should replace it by microarraydata(), RNAseqdata(), metabolomicdata() or equivalentlty continuousmicdata() or continuousanchoringdata() depending of the type of data you handle. \n")) microarraydata(file = file, backgrounddose, check = check, norm.method = norm.method) }
get_equally_spaced_points <- function(number_of_points) { parameter_validators$number_of_points$validate( number_of_points, -4) equally_spaced_points <- NULL inc <- pi * (3 - sqrt(5)) off <- 2.0 / number_of_points for (k in 0:(number_of_points - 1)) { y <- k * off - 1 + (off / 2) r <- sqrt(1 - y * y) phi <- k * inc x <- cos(phi) * r z <- sin(phi) * r equally_spaced_points <- rbind(equally_spaced_points, c(x, y, z)) } equally_spaced_points }
highlight_test_str = function(str, pattern, ignore_case = TRUE, global = TRUE, perl = TRUE, fixed = FALSE, color_palette = "Set3") { match_start = NULL match_ind = NULL capture_text = NULL capture_ind = NULL in_match_cap_start = NULL in_match_cap_end = NULL replacements = NULL suppressWarnings({ colors = RColorBrewer::brewer.pal(100, color_palette) }) if (global) { matches_raw = gregexpr(pattern, str, fixed = fixed, perl = perl & !fixed, ignore.case = ignore_case & !fixed)[[1]] if (all(matches_raw == -1)) return(NULL) matches = regmatches(rep(str, length(matches_raw)), matches_raw) } else { matches_raw = regexpr(pattern, str, fixed = fixed, perl = perl & !fixed, ignore.case = ignore_case & !fixed) if (all(matches_raw == -1)) return(NULL) matches = regmatches(str, matches_raw)[[1]] } if (perl & !is.null(attr(matches_raw, "capture.start"))) { match_end = matches_raw + attr(matches_raw, "match.length") - 1 capture_start = attr(matches_raw, "capture.start") capture_length = attr(matches_raw, "capture.length") - 1 capture_end = capture_start + capture_length match_df = data.table::data.table( match_ind = c(seq_len(length(matches))), match = matches, match_start = rep(matches_raw, ncol(capture_end)), match_end = rep(match_end, ncol(capture_end)), capture_ind = rep(seq_len(ncol(capture_end)), each = nrow(capture_end)), capture_start = as.numeric(capture_start), capture_end = as.numeric(capture_end) ) match_df = match_df[order(match_ind, capture_start), ] match_df[, capture_text := stringr::str_sub( str, capture_start, capture_end )] match_df[, in_match_cap_start := capture_start - (match_start - 1)] match_df[, in_match_cap_end := capture_end - (match_start - 1)] match_df = unique( match_df[, list(match, match_ind, match_start, match_end, capture_text, capture_ind, in_match_cap_start, in_match_cap_end)] ) match_df[, capture_text := paste0(capture_text, "_", capture_ind)] match_df = match_df[, lapply( .SD, function(...) list(unique(...)) ), by = match] match_df$replacements = vapply(seq_len(nrow(match_df)), function(.x) { txt = match_df$match[.x] buffer = 0 for (i in seq_len(length(match_df$in_match_cap_start[[.x]]))) { cap_txt = stringr::str_match( match_df$capture_text[[.x]][i], "(.+)_\\d+" )[, 2] if (match_df$in_match_cap_start[[.x]][i] + buffer <= nchar(txt) & match_df$in_match_cap_end[[.x]][i] + buffer <= nchar(txt)) { stringr::str_sub(txt, match_df$in_match_cap_start[[.x]][i] + buffer, match_df$in_match_cap_end[[.x]][i] + buffer) = "%s" replacement = paste0( "<span style='background-color:", colors[1 + i], "'>", cap_txt, "</span>" ) txt = sprintf(txt, replacement) buffer = buffer + nchar(replacement) - nchar(cap_txt) } } paste0( "<span style='background-color:", colors[1], "'>", txt, "</span>" ) }, character(1)) match_df = tidyr::unnest(match_df[, list(match_ind, match, replacements, match_start, match_end)], cols = c(match_ind, match_start, match_end)) match_df = unique(match_df) match_df = data.table::data.table(match_df) match_df = match_df[order(match_ind, decreasing = TRUE), ] } else { match_end = matches_raw + attr(matches_raw, "match.length") - 1 match_df = data.table::data.table( match_ind = seq_len(length(matches)), match = matches, match_start = matches_raw, match_end = match_end ) match_df[, replacements := paste0( "<span style='background-color:", colors[1], "'>", match, "</span>" )] match_df = match_df[order(match_ind, decreasing = TRUE), ] } txt = str for (i in seq_len(nrow(match_df))) { stringr::str_sub(txt, match_df$match_start[i], match_df$match_end[i]) = "%s" txt = sprintf(txt, match_df$replacements[i]) } txt }
Plotblsm<-function(Y.ia, model, labels = NULL, xlab = "", ylab = "", plotedges = TRUE, edgecolor = "black", colEll.i = rgb(.6, .6 ,.6 , alpha=.1), colEll.ia = rgb(1, .6 ,.6 , alpha=.1), LEVEL = .80, pchplot = 20, pchEll = 19, pchPl = 19, cexPl = 1.1, arrowhead = FALSE, curve = 0, xlim = c(-2,2), ylim = c(-2,2), lwdLine = .001, ...){ Z.i=model$lsmbEZ.i Z.a=model$lsmbEZ.a D=nrow(model$lsmbVZ.0) M=nrow(model$lsmbEZ.a) N=nrow(model$lsmbEZ.i) VZ1=model$lsmbVZ.1 VZ0=model$lsmbVZ.0 oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) par(mar=c(2,2,2,2)) plot(NA, xlim = xlim, ylim = ylim, ylab=ylab, xlab = xlab,...) for(n in 1:N) { coEl<-ellipse::ellipse(VZ0,centre = Z.i[n,],level=LEVEL,pch=pchEll) polygon(coEl[,1], coEl[,2], col = colEll.i, border=colEll.i) } if (plotedges == TRUE) { for(i in 1:N){ for(a in 1:M){ if(Y.ia[i,a] == 1) network.arrow(Z.i[i,1], Z.i[i,2], Z.a[a,1], Z.a[a,2], col = edgecolor, border = rgb(0, 0, 0, alpha =.02), lwd = .005, arrowhead = arrowhead, curve = curve) } } } for(n in 1:M) { coEl<-ellipse::ellipse(VZ1,centre = Z.a[n,],level=LEVEL,pch=pchEll) polygon(coEl[,1], coEl[,2], col = colEll.ia, border=colEll.ia) } if(!is.null(labels)){ text(Z.a, labels = labels, col = "black", font = 2, cex=1) } }
d <- read.table("pancreas_refseq_rpkms_counts_3514sc.txt", stringsAsFactors = F) d <- d[!duplicated(d[,1]), ] rownames(d) <- d[,1] d <- d[,3:ncol(d)] d <- d[,3515:7028] labs <- read.table("labels.txt", stringsAsFactors = F, header = F) labs <- as.character(labs) colnames(d) <- labs d <- d[,order(colnames(d))] d <- d[1:(nrow(d) - 1), ] ann <- read.table("E-MTAB-5061.sdrf.txt", stringsAsFactors = F, header = T, sep = "\t") rownames(ann) <- ann$Extract.Name ann <- ann[order(rownames(ann)), ] ann <- ann[,7:11] colnames(ann) <- c("cell_quality", "cell_type1", "disease", "sex", "age") ann$cell_type1 <- unlist(lapply(strsplit(ann$cell_type1, " cell"), "[[", 1)) source("../utils/create_sce.R") sceset <- create_sce_from_counts(d, ann) saveRDS(sceset, "segerstolpe.rds")
set.seed(8675309) n = 1000 x1 = rnorm(n) x2 = rnorm(n) y = 1 + .5*x1 + .2*x2 + rnorm(n) X = cbind(Intercept = 1, x1, x2) gd = function( par, X, y, tolerance = 1e-3, maxit = 1000, stepsize = 1e-3, adapt = FALSE, verbose = TRUE, plotLoss = TRUE ) { beta = par; names(beta) = colnames(X) loss = crossprod(X %*% beta - y) tol = 1 iter = 1 while(tol > tolerance && iter < maxit){ LP = X %*% beta grad = t(X) %*% (LP - y) betaCurrent = beta - stepsize * grad tol = max(abs(betaCurrent - beta)) beta = betaCurrent loss = append(loss, crossprod(LP - y)) iter = iter + 1 if (adapt) stepsize = ifelse( loss[iter] < loss[iter - 1], stepsize * 1.2, stepsize * .8 ) if (verbose && iter %% 10 == 0) message(paste('Iteration:', iter)) } if (plotLoss) plot(loss, type = 'l', bty = 'n') list( par = beta, loss = loss, RSE = sqrt(crossprod(LP - y) / (nrow(X) - ncol(X))), iter = iter, fitted = LP ) } init = rep(0, 3) gd_result = gd( init, X = X, y = y, tolerance = 1e-8, stepsize = 1e-4, adapt = TRUE ) str(gd_result) rbind( gd = round(gd_result$par[, 1], 5), lm = coef(lm(y ~ x1 + x2)) )
context("get_thresholds") set.seed(2507) m <- mtcars %>% machine_learn(outcome = am, tune = FALSE, models = "xgb") pred <- predict(m, dplyr::sample_n(mtcars, 5)) def <- get_thresholds(pred) opt_cost <- get_thresholds(pred, optimize = "cost") test_that("get_thresholds works for model_list", { expect_s3_class(get_thresholds(m), "tbl_df") }) test_that("get_thresholds works for predicted_df", { expect_s3_class(def, "tbl_df") }) test_that("number of rows is right", { expect_equal(nrow(get_thresholds(m)), length(unique(predict(m)$predicted_am)) + 1) expect_equal(nrow(def), length(unique(pred$predicted_am)) + 1) }) test_that("measures are respected", { expect_false("fnr" %in% names(get_thresholds(m, measures = "acc"))) expect_false("fnr" %in% names(get_thresholds(pred, measures = "acc"))) expect_error(get_thresholds(m, measures = c("mi", "f")), "not available") }) test_that("cost_fp and cost_fn are respected", { set1 <- get_thresholds(pred, cost_fn = 10) set2 <- get_thresholds(pred, measures = "cost", cost_fp = .1, cost_fn = 3) expect_false(isTRUE(all.equal(def, set1))) expect_false(isTRUE(all.equal(set1, set2))) }) test_that("get_thresholds order rows by increasing threshold", { expect_true(all(diff(def$threshold) < 0)) acc <- get_thresholds(m, measures = "acc") expect_true(all(diff(acc$threshold) < 0)) }) test_that("get_thresholds return has thresholds_df class", { expect_s3_class(def, "thresholds_df") }) test_that("get_thresholds errors nicely if labels aren't present", { expect_error(get_thresholds(select(pred, -am)), "doesn't have outcomes") }) test_that("optimize at default doesn't return `optimal` column", { expect_false("optimal" %in% names(def)) }) test_that("get_thresholds errors informatively if optimize not in measures", { expect_error(get_thresholds(pred, optimize = "cost", measures = c("ppv", "npv")), "must be one of the measures") }) test_that("optimize cost returns a column with TRUE only in lowest-cost row", { expect_true("optimal" %in% names(opt_cost)) expect_equal(sum(opt_cost$optimal), 1) expect_equal(which(opt_cost$optimal), which.min(opt_cost$cost)) }) test_that("optimize attaches attribute with name of optimized measure", { expect_null(attr(def, "optimized")) expect_equal(attr(opt_cost, "optimized"), "cost") }) test_that("get_measures", { expect_error(get_measures("nope"), "not available") get_all <- get_measures("all") expect_true("cost" %in% names(get_all)) expect_setequal(get_all, c(-1, 1)) to_get <- c("acc", "tpr") expect_equal(names(get_measures(to_get)), to_get) }) context("plot.thresholds_df") test_that("plot.thresholds_df is a registered S3 method", { expect_true("plot.thresholds_df" %in% methods("plot")) }) test_that("plot.thresholds_df returns a ggplot", { expect_s3_class(plot(def, print = FALSE), "gg") }) test_that("plot.thresholds_df respects optimize", { expect_false(isTRUE(all.equal( plot(def, print = FALSE), plot(opt_cost, print = FALSE) ))) })
seqtransn <- function(seqdata, with.missing=FALSE, norm=FALSE, pweight=FALSE) { if (!inherits(seqdata,"stslist")) stop("data is NOT a sequence object, see seqdef function to create one") dss <- seqdss(seqdata, with.missing=with.missing) dssl <- seqlength(dss) nbseq <- nrow(dss) if (pweight) { tr <- seqtrate(seqdata) dss.num <- seqasnum(dss)+1 trans <- matrix(0, nrow=nbseq, ncol=1) rownames(trans) <- rownames(seqdata) for (i in 1:nbseq) { if (dssl[i]>1) { for (j in 2:dssl[i]) { trans[i] <- trans[i] + (1-tr[dss.num[i,j-1], dss.num[i,j]]) } } } } else { trans <- dssl-1 if (any(dssl==0)) { trans[dssl==0] <- 0 } } if (norm) { seql <- seqlength(seqdata) trans <- trans/(seql-1) if (any(seql==1)) { trans[seql==1] <- 0 } } colnames(trans) <- "Trans." return(trans) } trans.pweight <- function(seqdata, tr) { res <- 0 for (i in 2:seqlength(seqdata)) { res <- res + (1-tr[seqdata[i-1], seqdata[i]]) } return(res) }
test_that("oc_config sets OPENCAGE_KEY environment variable", { withr::local_envvar(c("OPENCAGE_KEY" = key_200)) oc_config() expect_equal(Sys.getenv("OPENCAGE_KEY"), key_200) withr::local_envvar(c("OPENCAGE_KEY" = "")) oc_config(key = key_200) expect_equal(Sys.getenv("OPENCAGE_KEY"), key_200) withr::local_envvar(c("OPENCAGE_KEY" = key_402)) oc_config(key = key_200) expect_equal(Sys.getenv("OPENCAGE_KEY"), key_200) }) test_that("oc_config requests key from terminal", { skip_if_not_installed("mockery") rlang::local_interactive(TRUE) withr::local_envvar(c("OPENCAGE_KEY" = "")) mockery::stub( oc_config, "readline", key_200, ) expect_message( oc_config(key = ""), "Please enter your OpenCage API key and press enter:" ) expect_equal(Sys.getenv("OPENCAGE_KEY"), key_200) }) test_that("oc_config throws error with faulty OpenCage key", { withr::local_envvar(c("OPENCAGE_KEY" = "")) expect_equal(Sys.getenv("OPENCAGE_KEY"), "") expect_error(oc_config(key = ""), "set the environment variable OPENCAGE_KEY") expect_error( oc_config(key = "incomplete_key"), "(OpenCage API key must be a )*.( string.)" ) }) test_that("oc_config updates rate limit of oc_get_limit", { withr::local_envvar(c("OPENCAGE_KEY" = key_200)) rps <- 5L oc_config(rate_sec = rps) expect_equal(ratelimitr::get_rates(oc_get_limited)[[1]][["n"]], rps) rps <- 3L oc_config(rate_sec = rps) expect_equal(ratelimitr::get_rates(oc_get_limited)[[1]][["n"]], rps) oc_config() expect_equal(ratelimitr::get_rates(oc_get_limited)[[1]][["n"]], 1L) }) test_that("oc_config sets no_record option", { withr::local_envvar(c("OPENCAGE_KEY" = key_200)) withr::local_options(list(oc_no_record = NULL)) res <- oc_process("Hamburg", return = "url_only") expect_match(res[[1]], "&no_record=1", fixed = TRUE) oc_config() expect_equal(getOption("oc_no_record"), TRUE) res <- oc_process("Hamburg", return = "url_only") expect_match(res[[1]], "&no_record=1", fixed = TRUE) oc_config(no_record = FALSE) expect_equal(getOption("oc_no_record"), FALSE) res <- oc_process("Hamburg", return = "url_only") expect_match(res[[1]], "&no_record=0", fixed = TRUE) oc_config(no_record = TRUE) expect_equal(getOption("oc_no_record"), TRUE) res <- oc_process("Hamburg", return = "url_only") expect_match(res[[1]], "&no_record=1", fixed = TRUE) }) test_that("oc_config sets show_key option", { withr::local_envvar(c("OPENCAGE_KEY" = key_200)) oc_config() expect_equal(getOption("oc_show_key"), FALSE) withr::local_envvar(c("OPENCAGE_KEY" = key_200)) oc_config(show_key = TRUE) expect_equal(getOption("oc_show_key"), TRUE) })
indtestHsic <- function(x,y,alpha=0.05, pars = list(method = "ExactFastTrace")) { if(is.matrix(x)==FALSE){ x<-as.matrix(x)} if(is.matrix(y)==FALSE){ y<-as.matrix(y)} len <- dim(x)[1] xnorm<-as.matrix(dist(x,method="euclidean",diag=TRUE,upper=TRUE)) xnorm<-xnorm^2 ynorm<-as.matrix(dist(y,method="euclidean",diag=TRUE,upper=TRUE)) ynorm<-ynorm^2 if(len>1000) { sam <- sample(1:len,1000) xhilf<-xnorm[sam,sam] yhilf<-ynorm[sam,sam] } else { xhilf<-xnorm yhilf<-ynorm } sigmax<-sqrt(0.5*median(xhilf[lower.tri(xhilf,diag=FALSE)])) sigmay<-sqrt(0.5*median(yhilf[lower.tri(yhilf,diag=FALSE)])) if(pars$method == "Exact" || pars$method == "ExactFastTrace") { ptm <- proc.time() KX <- exp(-xnorm/(2*sigmax^2)) KY <- exp(-ynorm/(2*sigmay^2)) timeGramMat <- (proc.time() - ptm)[1] if(pars$method == "Exact") { ptm <- proc.time() H<-diag(1,len)-1/len*matrix(1,len,len) HSIC <- 1/(len^2)*sum(diag(KX%*%H%*%KY%*%H)) timeHSIC <- (proc.time() - ptm)[1] } if(pars$method == "ExactFastTrace") { ptm <- proc.time() H<-diag(1,len)-1/len*matrix(1,len,len) HSIC <- 1/(len^2) * sum((KX - 1/len*(KX%*%rep(1,len))%*%t(rep(1,len)))*t(KY - 1/len*(KY%*%rep(1,len))%*%t(rep(1,len)))) timeHSIC <- (proc.time() - ptm)[1] } ptm <- proc.time() mux <- (sum(KX)-len)/(len*(len-1)) muy <- (sum(KY)-len)/(len*(len-1)) mean_h0 <- 1/len*(1+mux*muy-mux-muy) var_h0 <- (2*(len-4)*(len-5))/(len*(len-1)*(len-2)*(len-3)) * 1/((len-1)^2)*sum((KX - 1/len*(KX%*%rep(1,len))%*%t(rep(1,len)))*t(KX - 1/len*(KX%*%rep(1,len))%*%t(rep(1,len)))) * 1/((len-1)^2)*sum((KY - 1/len*(KY%*%rep(1,len))%*%t(rep(1,len)))*t(KY - 1/len*(KY%*%rep(1,len))%*%t(rep(1,len)))) timeGamma <- (proc.time() - ptm)[1] } if(pars$method == "IncChol" || pars$method == "IncCholFastTrace") { ptm <- proc.time() LX <- kernlab::inchol(x, kernel="rbfdot", kpar=list(sigma=1/(2*sigmax^2)), tol = 0.0001, maxiter = 300) LX <- matrix(LX,nrow=dim(LX)[1], ncol=dim(LX)[2]) LY <- kernlab::inchol(y, kernel="rbfdot", kpar=list(sigma=1/(2*sigmay^2)), tol = 0.0001, maxiter = 300) LY <- matrix(LY,nrow=dim(LY)[1], ncol=dim(LY)[2]) LXc <- LX-1/len*(as.matrix(rep(1,len))%*%colSums(LX)) LYc <- LY-1/len*(as.matrix(rep(1,len))%*%colSums(LY)) timeGramMat <- (proc.time() - ptm)[1] if(pars$method == "IncChol") { ptm <- proc.time() HSIC <- 1/(len^2)*sum(diag((t(LX)%*%LYc)%*%(t(LY)%*%LXc))) timeHSIC <- (proc.time() - ptm)[1] } if(pars$method == "IncCholFastTrace") { ptm <- proc.time() HSIC <- 1/(len^2)*sum( (t(LX)%*%LYc) * t((t(LY)%*%LXc))) timeHSIC <- (proc.time() - ptm)[1] } ptm <- proc.time() mux <- (crossprod(colSums(LX))-len)/(len*(len-1)) muy <- (crossprod(colSums(LY))-len)/(len*(len-1)) mean_h0 <- 1/len*(1+mux*muy-mux-muy) var_h0 <- (2*(len-4)*(len-5))/(len*(len-1)*(len-2)*(len-3))*1/((len-1)^2)*sum(diag((t(LX)%*%LXc)%*%(t(LX)%*%LXc)))*1/((len-1)^2)*sum(diag((t(LY)%*%LYc)%*%(t(LY)%*%LYc))) timeGamma <- (proc.time() - ptm)[1] } a <- (mean_h0^2)/var_h0 b <- len*var_h0/mean_h0 critical_value <- qgamma(1-alpha,shape=a,scale=b) p_value <- pgamma(len*HSIC,shape=a,scale=b, lower.tail=FALSE) resu <- list(statistic = len*HSIC, crit.value = critical_value, p.value = p_value, time = c(timeGramMat,timeHSIC,timeGamma)) return(resu) }
NULL selectionGet <- function(id = NULL) { callFun("selectionGet", id = id) } selectionSet <- function(value = NULL, id = NULL) { callFun("selectionSet", value = value, id = id) }
rOverlay = function(las, res, start = c(0,0), buffer = 0) { if (is(res, "RasterLayer")) { resolution <- raster::res(res) if (round(resolution[1], 4) != round(resolution[2], 4)) stop("Rasters with different x y resolutions are not supported", call. = FALSE) return(raster::raster(res)) } bbox <- raster::extent(las) + 2 * buffer bbox@xmin <- round_any(bbox@xmin - 0.5 * res - start[1], res) + start[1] bbox@xmax <- round_any(bbox@xmax - 0.5 * res - start[1], res) + res + start[1] bbox@ymin <- round_any(bbox@ymin - 0.5 * res - start[2], res) + start[2] bbox@ymax <- round_any(bbox@ymax - 0.5 * res - start[2], res) + res + start[2] layout <- suppressWarnings(raster::raster(bbox, res = res, crs = las@proj4string)) layout@data@values <- rep(NA, raster::ncell(layout)) raster::crs(layout) <- raster::crs(las) return(layout) } rMergeList = function(raster_list) { if (length(raster_list) == 1) return(raster_list) names <- names(raster_list[[1]]) factor <- raster_list[[1]]@data@isfactor issingle <- sapply(raster_list, function(x) { raster::nrow(x) == 1 & raster::ncol(x) == 1 }) single <- list() if (any(issingle)) { single <- raster_list[issingle] raster_list <- raster_list[!issingle] } raster <- do.call(raster::merge, raster_list) names(raster) <- names if (is(raster, "RasterBrick") && raster::inMemory(raster)) colnames(raster@data@values) <- names for (pixel in single) { pix = raster::rasterToPoints(pixel, spatial = TRUE) raster[pix] <- as.matrix(pix@data) } raster::crs(raster) <- raster::crs(raster_list[[1]]) return(raster) } rBuildVRT = function(file_list, vrt) { if (!options("lidR.buildVRT")[[1]]) return(unlist(file_list)) file_list <- unlist(file_list) layers <- names(raster::stack(file_list[1])) folder <- dirname(file_list[1]) file <- paste0("/", vrt, ".vrt") vrt <- paste0(folder, file) sf::gdal_utils("buildvrt", source = file_list, destination = vrt, quiet = TRUE) if (!file.exists(vrt)) return(unlist(file_list)) file_list <- raster::brick(vrt) names(file_list) <- layers if (dim(file_list)[3] == 1) return(file_list[[1]]) else return(file_list) } match_chm_and_seeds = function(chm, seeds, field) { assert_is_all_of(chm, "RasterLayer") assert_is_all_of(seeds, "SpatialPointsDataFrame") stopif_forbidden_name(field) null = list(cells = integer(), ids = numeric()) if (is.null(raster::intersect(raster::extent(chm), raster::extent(seeds)))) { warning("No tree can be used as seed: canopy height model and tree tops extents do not overlap.", call. = FALSE) return(null) } if (field %in% names(seeds@data)) { ids <- seeds@data[[field]] if (!is.numeric(ids)) stop("Tree IDs much be of a numeric type", call. = FALSE) if (length(unique(ids)) < length(ids)) stop("Duplicated tree IDs found.", call. = FALSE) } else ids <- 1:nrow(seeds@data) cells <- raster::cellFromXY(chm, seeds) if (anyNA(cells)) { if (all(is.na(cells))) { warning("No tree can be used as seed: all tree tops are outside the CHM", call. = FALSE) return(null) } else { warning("Some trees are outside the canopy height model: they can't be used as seeds", call. = FALSE) } no_na = !is.na(cells) seeds = seeds[no_na,] cells = cells[no_na] } return(list(cells = cells, ids = ids)) } raster2dataframe = function(x, xy = FALSE, na.rm = FALSE, fast = FALSE) { if (!fast) return(raster::as.data.frame(x, xy = xy, na.rm = na.rm)) v <- raster::getValues(x) if (xy) { XY <- data.frame(raster::xyFromCell(x, 1:raster::ncell(x))) v <- cbind(XY, v) } if (na.rm) v <- stats::na.omit(cbind(1:raster::ncell(x), v)) v <- as.data.frame(v) if (na.rm) { rownames(v) <- as.character(v[,1]) v <- v[,-1,drop=FALSE] } if (raster::nlayers(x) == 1) colnames(v)[ncol(v)] <- names(x) return(v) }
NULL stochastic_matrix <- function(graph, column.wise=FALSE, sparse=igraph_opt("sparsematrices")) { if (!is_igraph(graph)) { stop("Not a graph object") } column.wise <- as.logical(column.wise) if (length(column.wise) != 1) { stop("`column.wise' must be a logical scalar") } sparse <- as.logical(sparse) if (length(sparse) != 1) { stop("`sparse' must be a logical scalar") } on.exit(.Call(C_R_igraph_finalizer)) if (sparse) { res <- .Call(C_R_igraph_get_stochastic_sparsemat, graph, column.wise) res <- igraph.i.spMatrix(res) } else { res <- .Call(C_R_igraph_get_stochastic, graph, column.wise) } if (igraph_opt("add.vertex.names") && is_named(graph)) { rownames(res) <- colnames(res) <- V(graph)$name } res } scg_group <- function(V, nt, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), p=NULL, maxiter=100) { V <- as.matrix(structure(as.double(V), dim=dim(V))) groups <- as.numeric(nt) mtype <- switch(igraph.match.arg(mtype), "symmetric"=1, "laplacian"=2, "stochastic"=3) algo <- switch(igraph.match.arg(algo), "optimum"=1, "interv_km"=2, "interv"=3, "exact_scg"=4) if (!is.null(p)) p <- as.numeric(p) maxiter <- as.integer(maxiter) on.exit( .Call(C_R_igraph_finalizer) ) res <- .Call(C_R_igraph_scg_grouping, V, as.integer(nt[1]), if (length(nt)==1) NULL else nt, mtype, algo, p, maxiter) res } scg_semi_proj <- function(groups, mtype=c("symmetric", "laplacian", "stochastic"), p=NULL, norm=c("row", "col"), sparse=igraph_opt("sparsematrices")) { groups <- as.numeric(groups)-1 mtype <- switch(igraph.match.arg(mtype), "symmetric"=1, "laplacian"=2, "stochastic"=3) if (!is.null(p)) p <- as.numeric(p) norm <- switch(igraph.match.arg(norm), "row"=1, "col"=2) sparse <- as.logical(sparse) on.exit( .Call(C_R_igraph_finalizer) ) res <- .Call(C_R_igraph_scg_semiprojectors, groups, mtype, p, norm, sparse) if (sparse) { res$L <- igraph.i.spMatrix(res$L) res$R <- igraph.i.spMatrix(res$R) } res } scg <- function(X, ev, nt, groups=NULL, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), norm=c("row", "col"), direction=c("default", "left", "right"), evec=NULL, p=NULL, use.arpack=FALSE, maxiter=300, sparse=igraph_opt("sparsematrices"), output=c("default", "matrix", "graph"), semproj=FALSE, epairs=FALSE, stat.prob=FALSE) UseMethod("scg") scg.igraph <- function(X, ev, nt, groups=NULL, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), norm=c("row", "col"), direction=c("default", "left", "right"), evec=NULL, p=NULL, use.arpack=FALSE, maxiter=300, sparse=igraph_opt("sparsematrices"), output=c("default", "matrix", "graph"), semproj=FALSE, epairs=FALSE, stat.prob=FALSE) { myscg(graph=X, matrix=NULL, sparsemat=NULL, ev=ev, nt=nt, groups=groups, mtype=mtype, algo=algo, norm=norm, direction=direction, evec=evec, p=p, use.arpack=use.arpack, maxiter=maxiter, sparse=sparse, output=output, semproj=semproj, epairs=epairs, stat.prob=stat.prob) } scg.matrix <- function(X, ev, nt, groups=NULL, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), norm=c("row", "col"), direction=c("default", "left", "right"), evec=NULL, p=NULL, use.arpack=FALSE, maxiter=300, sparse=igraph_opt("sparsematrices"), output=c("default", "matrix", "graph"), semproj=FALSE, epairs=FALSE, stat.prob=FALSE) { myscg(graph=NULL, matrix=X, sparsemat=NULL, ev=ev, nt=nt, groups=groups, mtype=mtype, algo=algo, norm=norm, direction=direction, evec=evec, p=p, use.arpack=use.arpack, maxiter=maxiter, sparse=sparse, output=output, semproj=semproj, epairs=epairs, stat.prob=stat.prob) } scg.Matrix <- function(X, ev, nt, groups=NULL, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), norm=c("row", "col"), direction=c("default", "left", "right"), evec=NULL, p=NULL, use.arpack=FALSE, maxiter=300, sparse=igraph_opt("sparsematrices"), output=c("default", "matrix", "graph"), semproj=FALSE, epairs=FALSE, stat.prob=FALSE) { myscg(graph=NULL, matrix=NULL, sparsemat=X, ev=ev, nt=nt, groups=groups, mtype=mtype, algo=algo, norm=norm, direction=direction, evec=evec, p=p, use.arpack=use.arpack, maxiter=maxiter, sparse=sparse, output=output, semproj=semproj, epairs=epairs, stat.prob=stat.prob) } myscg <- function(graph, matrix, sparsemat, ev, nt, groups=NULL, mtype=c("symmetric", "laplacian", "stochastic"), algo=c("optimum", "interv_km", "interv", "exact_scg"), norm=c("row", "col"), direction=c("default", "left", "right"), evec=NULL, p=NULL, use.arpack=FALSE, maxiter=300, sparse=igraph_opt("sparsematrices"), output=c("default", "matrix", "graph"), semproj=FALSE, epairs=FALSE, stat.prob=FALSE) { if (!is.null(graph)) { stopifnot(is_igraph(graph)) } if (!is.null(matrix)) { stopifnot(is.matrix(matrix)) } if (!is.null(sparsemat)) { stopifnot(inherits(sparsemat, "Matrix")) } if (!is.null(sparsemat)) { sparsemat <- as(sparsemat, "dgCMatrix") } ev <- as.numeric(as.integer(ev)) nt <- as.numeric(as.integer(nt)) if (!is.null(groups)) groups <- as.numeric(groups) mtype <- igraph.match.arg(mtype) algo <- switch(igraph.match.arg(algo), "optimum"=1, "interv_km"=2, "interv"=3, "exact_scg"=4) if (!is.null(groups)) { storage.mode(groups) <- "double" } use.arpack <- as.logical(use.arpack) maxiter <- as.integer(maxiter) sparse <- as.logical(sparse) output <- switch(igraph.match.arg(output), "default"=1, "matrix"=2, "graph"=3) semproj <- as.logical(semproj) epairs <- as.logical(epairs) on.exit( .Call(C_R_igraph_finalizer) ) if (mtype=="symmetric") { if (!is.null(evec)) { storage.mode(evec) <- "double" } res <- .Call(C_R_igraph_scg_adjacency, graph, matrix, sparsemat, ev, nt, algo, evec, groups, use.arpack, maxiter, sparse, output, semproj, epairs) } else if (mtype=="laplacian") { norm <- switch(igraph.match.arg(norm), "row"=1, "col"=2) if (!is.null(evec)) { storage.mode(evec) <- "complex" } direction <- switch(igraph.match.arg(direction), "default"=1, "left"=2, "right"=3) res <- .Call(C_R_igraph_scg_laplacian, graph, matrix, sparsemat, ev, nt, algo, norm, direction, evec, groups, use.arpack, maxiter, sparse, output, semproj, epairs) } else if (mtype=="stochastic") { norm <- switch(igraph.match.arg(norm), "row"=1, "col"=2) if (!is.null(evec)) { storage.mode(evec) <- "complex" } if (!is.null(p)) { storage.mode(p) <- "double" } stat.prob <- as.logical(stat.prob) res <- .Call(C_R_igraph_scg_stochastic, graph, matrix, sparsemat, ev, nt, algo, norm, evec, groups, p, use.arpack, maxiter, sparse, output, semproj, epairs, stat.prob) } if (!is.null(res$Xt) && class(res$Xt) == "igraph.tmp.sparse") { res$Xt <- igraph.i.spMatrix(res$Xt) } if (!is.null(res$L) && class(res$L) == "igraph.tmp.sparse") { res$L <- igraph.i.spMatrix(res$L) } if (!is.null(res$R) && class(res$R) == "igraph.tmp.sparse") { res$R <- igraph.i.spMatrix(res$R) } res } scg_eps <- scg_eps