lcolonn commited on
Commit
e22ef0a
·
unverified ·
1 Parent(s): a37bbc0

Revert "feat: remove loading script"

Browse files

This reverts commit a37bbc06ed4b277e6d73cdcde740f8e496adaef4.

Files changed (1) hide show
  1. patfig.py +70 -0
patfig.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ from datasets import load_dataset, Dataset, Value, Sequence, Features, DatasetInfo, GeneratorBasedBuilder, Image
3
+
4
+ from pathlib import Path
5
+ import os
6
+ import pandas as pd
7
+
8
+ _DESCRIPTION = """\ The PatFig Dataset is a curated collection of over 18,000 patent images from more than 7,
9
+ 000 European patent applications, spanning the year 2020. It aims to provide a comprehensive resource for research
10
+ and applications in image captioning, abstract reasoning, patent analysis, and automated documentprocessing. The
11
+ overarching goal of this dataset is to advance the research in visually situated language understanding towards more
12
+ hollistic consumption of the visual and textual data.
13
+ """
14
+
15
+ _URL = "https://huggingface.co/datasets/lcolonn/patfig/resolve/main/"
16
+ _URLS = {
17
+ "train_images": "train_images.tar.gz",
18
+ "test_images": "test_images.tar.gz",
19
+ "annotations_train": "annotations_train.csv",
20
+ "annotations_test": "annotations_test.csv",
21
+ }
22
+
23
+
24
+ class PatFig(GeneratorBasedBuilder):
25
+ """DatasetBuilder for patfig dataset."""
26
+
27
+ def _info(self):
28
+ return DatasetInfo(
29
+ description=_DESCRIPTION,
30
+ features=Features({
31
+ "image": Image(),
32
+ "image_name": Value("string"),
33
+ "pub_number": Value("string"),
34
+ "title": Value("string"),
35
+ "figs_norm": Sequence(feature=Value("string"), length=-1),
36
+ "short_description": Sequence(feature=Value("string"), length=-1),
37
+ "long_description": Sequence(feature=Value("string"), length=-1),
38
+ "short_description_token_count": Value("int64"),
39
+ "long_description_token_count": Value("int64"),
40
+ "draft_class": Value("string"),
41
+ "cpc_class": Value("string"),
42
+ "relevant_terms": [{'element_identifier': Value("string"), "terms": Sequence(feature=Value("string"), length=-1)}],
43
+ "associated_claims": Value("string"),
44
+ "compound": Value("bool"),
45
+ "references": Sequence(feature=Value(dtype='string'), length=-1),
46
+ }),
47
+ )
48
+
49
+ def _split_generators(self, dl_manager: datasets.DownloadManager):
50
+ # FIXME: Currently downloads all the files regardless of the split
51
+ urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
52
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
53
+ return [
54
+ datasets.SplitGenerator(
55
+ name=datasets.Split.TRAIN, gen_kwargs={"images_dir": downloaded_files["train_images"], "annotations_dir": downloaded_files["annotations_train"]}
56
+ ),
57
+ datasets.SplitGenerator(
58
+ name=datasets.Split.TEST, gen_kwargs={"images_dir": f'{downloaded_files["test_images"]}/test', "annotations_dir": downloaded_files["annotations_test"]}
59
+ ),
60
+ ]
61
+
62
+ def _generate_examples(self, images_dir: str, annotations_dir: str):
63
+ df = pd.read_csv(annotations_dir)
64
+
65
+ for idx, row in df.iterrows():
66
+ image_path = os.path.join(images_dir, row["pub_number"], row["image_name"])
67
+ yield idx, {
68
+ "image": image_path,
69
+ **row.to_dict(),
70
+ }