|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multilingual Librispeech automatic speech recognition dataset.""" |
|
|
|
|
|
import glob |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
_CITATION = """\ |
|
@article{Pratap2020MLSAL, |
|
title={MLS: A Large-Scale Multilingual Dataset for Speech Research}, |
|
author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert}, |
|
journal={ArXiv}, |
|
year={2020}, |
|
volume={abs/2012.03411} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Multilingual LibriSpeech (MLS) dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish. |
|
""" |
|
|
|
_URL = "http://www.openslr.org/94" |
|
_DL_URL_FORMAT = "https://dl.fbaipublicfiles.com/mls/mls_{}.tar.gz" |
|
|
|
|
|
class MultilingualLibrispeechConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for MultilingualLibrispeech.""" |
|
|
|
def __init__(self, name, **kwargs): |
|
""" |
|
Args: |
|
name: `string`, name of dataset config |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(MultilingualLibrispeechConfig, self).__init__( |
|
version=datasets.Version("2.1.0", ""), name=name, data_dir=_DL_URL_FORMAT.format(name), **kwargs |
|
) |
|
|
|
|
|
class MultilingualLibrispeech(datasets.GeneratorBasedBuilder): |
|
"""Multilingual Librispeech dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
MultilingualLibrispeechConfig(name="german", description="German LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="dutch", description="Dutch LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="french", description="French LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="spanish", description="Spanish LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="italian", description="Italian LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="portuguese", description="Portuguese LibriSpeech dataset"), |
|
MultilingualLibrispeechConfig(name="polish", description="Polish LibriSpeech dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.features.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"speaker_id": datasets.Value("int64"), |
|
"chapter_id": datasets.Value("int64"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
homepage=_URL, |
|
citation=_CITATION, |
|
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download_and_extract(self.config.data_dir) |
|
data_path = os.path.join(archive_path, "mls_" + self.config.name) |
|
|
|
train_splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"data_dir": os.path.join(data_path, "train")} |
|
), |
|
datasets.SplitGenerator( |
|
name="train.9h", |
|
gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/9hr"}, |
|
), |
|
datasets.SplitGenerator( |
|
name="train.1h", |
|
gen_kwargs={"data_dir": os.path.join(data_path, "train"), "sub_folder": "limited_supervision/1hr"}, |
|
), |
|
] |
|
|
|
return train_splits + [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"data_dir": os.path.join(data_path, "dev")} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"data_dir": os.path.join(data_path, "test")} |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_dir, sub_folder=""): |
|
"""Generate examples from a Multilingual LibriSpeech data dir.""" |
|
transcript_path = os.path.join(data_dir, "transcripts.txt") |
|
key = 0 |
|
|
|
all_ids = None |
|
if sub_folder != "": |
|
sub_path = os.path.join(data_dir, sub_folder) |
|
all_ids_paths = glob.glob(sub_path + "/*/*.txt") + glob.glob(sub_path + "/*.txt") |
|
all_ids = [] |
|
for path in all_ids_paths: |
|
with open(path, "r", encoding="utf-8") as f: |
|
all_ids += [line.strip() for line in f.readlines()] |
|
|
|
all_ids = set(all_ids) |
|
|
|
with open(transcript_path, "r", encoding="utf-8") as f: |
|
for line in f: |
|
line = line.strip() |
|
id_, transcript = line.split("\t") |
|
|
|
if all_ids is not None and id_ not in all_ids: |
|
|
|
continue |
|
|
|
audio_file = f"{id_}.flac" |
|
speaker_id, chapter_id = [int(el) for el in id_.split("_")[:2]] |
|
yield key, { |
|
"id": id_, |
|
"speaker_id": speaker_id, |
|
"chapter_id": chapter_id, |
|
"file": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file), |
|
"audio": os.path.join(data_dir, "audio", str(speaker_id), str(chapter_id), audio_file), |
|
"text": transcript, |
|
} |
|
key += 1 |
|
|