seq_id
stringlengths
7
11
text
stringlengths
156
1.7M
repo_name
stringlengths
7
125
sub_path
stringlengths
4
132
file_name
stringlengths
4
77
file_ext
stringclasses
6 values
file_size_in_byte
int64
156
1.7M
program_lang
stringclasses
1 value
lang
stringclasses
38 values
doc_type
stringclasses
1 value
stars
int64
0
24.2k
dataset
stringclasses
1 value
pt
stringclasses
1 value
27066073984
import datetime def print_progress_bar(curr_time, start_time, stop_time, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: curr_time - Required : current time (datetime.datetime) start_time - Required : process start time (datetime.datetime) stop_time - Required : end time (datetime.datetime) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) Based on: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console """ elapsed_time = curr_time - start_time process_time = stop_time - start_time percent = ("{0:." + str(decimals) + "f}").format(100 * (elapsed_time / process_time)) filledLength = int(length * elapsed_time // process_time) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd) # Print New Line on Complete if curr_time >= stop_time: print()
ak5793/stopwatch
stopwatch.py
stopwatch.py
py
1,386
python
en
code
0
github-code
6
28969370099
from django.urls import path from apps.cafes.urls import CAFE_URL_KEYWORD from apps.products import views CATEGORY_LIST_URL_NAME = "category-list" CATEGORY_DETAIL_URL_NAME = "category-detail" CATEGORY_URL_KEYWORD = "category_id" OPTION_GROUP_LIST_URL_NAME = "optiongroup-list" OPTION_GROUP_DETAIL_URL_NAME = "optiongroup-detail" OPTION_GROUP_URL_KEYWORD = "optiongroup_id" PRODUCT_LIST_URL_NAME = "product-list" PRODUCT_DETAIL_URL_NAME = "product-detail" PRODUCT_URL_KEYWORD = "product_id" urlpatterns = [ path( f"<uuid:{CAFE_URL_KEYWORD}>/categories/", views.CategoryAPIViewSet.as_view({"get": "list", "post": "create"}), name=CATEGORY_LIST_URL_NAME, ), path( f"<uuid:{CAFE_URL_KEYWORD}>/categories/<int:{CATEGORY_URL_KEYWORD}>/", views.CategoryAPIViewSet.as_view( {"get": "retrieve", "put": "update", "delete": "destroy"} ), name=CATEGORY_DETAIL_URL_NAME, ), path( f"<uuid:{CAFE_URL_KEYWORD}>/optiongroups/", views.OptionGroupAPIViewSet.as_view({"get": "list", "post": "create"}), name=OPTION_GROUP_LIST_URL_NAME, ), path( f"<uuid:{CAFE_URL_KEYWORD}>/optiongroups/<int:{OPTION_GROUP_URL_KEYWORD}>/", views.OptionGroupAPIViewSet.as_view( {"get": "retrieve", "put": "update", "delete": "destroy"} ), ), path( f"<uuid:{CAFE_URL_KEYWORD}>/products/", views.ProductAPIViewSet.as_view({"get": "list", "post": "create"}), name=PRODUCT_LIST_URL_NAME, ), path( f"<uuid:{CAFE_URL_KEYWORD}>/products/<int:{PRODUCT_URL_KEYWORD}>/", views.ProductAPIViewSet.as_view( {"get": "retrieve", "put": "update", "delete": "destroy"} ), name=PRODUCT_DETAIL_URL_NAME, ), ]
TGoddessana/cafehere
apps/products/urls.py
urls.py
py
1,800
python
en
code
0
github-code
6
41489732999
import numpy as np from gym import spaces import gym import json import pickle class StateNormWrapper(gym.Wrapper): """ Normalize state value for environments. """ def __init__(self, env, file_name): super(StateNormWrapper, self).__init__(env) with open(file_name, "r") as read_file: rl_confs = json.load(read_file) # hyperparameters for rl training print(env.spec.id) data_path_prefix = rl_confs["data_collect_confs"]["data_path"]+env.spec.id.split("-")[0].lower()+'/' with open(data_path_prefix+'state_info.pkl', 'rb') as f: self.state_stats=pickle.load(f) def norm(self, s): mean = self.state_stats['mean'] std = self.state_stats['std'] s = (s-mean)/std return s def step(self, a): observation, reward, done, info = self.env.step(a) return self.norm(observation), reward, done, info def reset(self, **kwargs): observation = self.env.reset(**kwargs) return self.norm(observation) def render(self, **kwargs): pass if __name__ == '__main__': import matplotlib.pyplot as plt # test # EnvName = 'CartPole-v1' EnvName = 'LunarLander-v2' env = StateNormWrapper(gym.make(EnvName), file_name="rl_train.json") for _ in range(10): env.reset() for _ in range(1000): # env.render() a = env.action_space.sample() s, r, d, _ = env.step(a) # take a random action if d: break print(s) # print(s.shape) env.close()
quantumiracle/Cascading-Decision-Tree
src/rl/env_wrapper.py
env_wrapper.py
py
1,617
python
en
code
32
github-code
6
39005364665
import numpy as np import datetime import math def anagram(s1,s2): s1=list(s1) s2=list(s2) if len(s1)==(len(s2)): s1=set(s1) s2=set(s2) s3=set() if s1^s2==s3: print("Anagram") else: print("not an anagram") else: print("String are ****NOT*** Anagram") def primerange(num): newarr=[] for num in range(0,num+1): if num>1: for i in range(2,num): if num%i==0: break else: #print(num,' ',sep=',',end='') newarr.append(num) print(newarr) def primeanagram(num): cnt=0 newarr=[] new=[] for num in range(0,num+1): if num>1: for i in range(2,num): if num%i==0: break else: #print(num,' ',sep=',',end='') newarr.append(num) print(newarr) for i in range(0,len(newarr)): for j in range(i+1,len(newarr)): newarr[i]=str(newarr[i]) newarr[j]=str(newarr[j]) if len(newarr[i])== len(newarr[j]): s1=set(newarr[i]) s2=set(newarr[j]) s3=set() if s1^s2==s3: print(" ******Anagram******") cnt+=1 new.append(s1) new.append(s2) print("Anagram:-",new) print("total count",cnt) else: print("not an anagram") else: print("String are ****NOT*** Anagram") for i in range(0,len(newarr)): newarr[i]=str(newarr[i]) newarr[j]=newarr[::-1] if len(newarr[i])==len(newarr[j]): if newarr[i]==newarr[j]: print("palindrome") cnt+=1 print(cnt) else: print() else: print() def insertionsort(alist): # alist=alist.split(" ") for i in range(0,len(alist)): print(len(alist)) current=alist[i] while i>0 and alist[i-1]>current: alist[i]=alist[i-1] i=i-1 alist[i]=current print (alist) def bubblesort(alist): # alist=alist.split(" ") for i in range(1,len(alist)): for j in range(i): if alist[j]>alist[j+1]: temp=alist[j] alist[j]=alist[j+1] alist[j+1]=temp print(alist) print(len(alist)) def convert(string): li=list(string.split(" ")) return li def binaryserach(alist,key,length): start=0 end=length-1 mid=0 print(start,end) while start<=end: mid=end//2 if key == (alist[mid]): print("\nEntered number is present at position",key,mid) return -1 elif key<alist[mid]: end=mid-1 elif key > alist[mid]: start=mid +1 print("\n Element not found") def dayofweek(m,d,y): # m=int(input("Enter the month :")) # d=int(input("Enter the date :")) # y=int(input("Enter the year :")) today=datetime.datetime(y,m,d) Day=today.weekday() print(Day) yo=y-(14-m)/12 x=yo +(yo/4)-(yo/100)+(yo/400) print(yo,x) mo= m+12*((14-m)/12)-2 do=(d+x+(31*mo/12))%7 print(x,mo,do) d1=math.floor(do) print(d1) if Day==0: print("Monday") elif Day ==1: print("Tuesday") elif Day ==2: print("Wednesday") elif Day ==3: print("Thursday") elif Day ==4: print("Friday") elif Day ==5: print("Saturday") else: print("Sunday") if d1==1: print("Monday") elif d1 ==2: print("Tuesday") elif d1 ==3: print("Wednesday") elif d1 ==4: print("Thursday") elif d1 ==5: print("Friday") elif d1 ==6 : print("Saturday") else: print("Sunday") def tempCon(c,f): a=c*9/5 +32 print("Celsius to fahrenheit: ",a) b = (f-32)*5/9 print("fahrenheit to Celsius: ",b) def monpay(Y,R,P): r=R/(12*100) n=Y*12 p1=P*r p2=math.pow(1/(1+r),n) p3=1-p2 print("Enter the number of years in months :- ",n) print("Enter the rate of interset ") print("Payment to be paid monthly:",p1/p3) print("Total amount to be paid back all together",(p1/p3)*n) print(n,r) print(p1,p2) def dectobinary(n): binaryarr=[0]*8 i=0 while n>0: binaryarr[i]=n%2 n=int(n/2) i+=1 for j in range(7,-1,-1): print(binaryarr[j],end=" ") return binaryarr def swap(dec): j=7 for i in range(3,-1,-1): temp=dec[i] dec[i]=dec[j] dec[j]=temp j-=1 print() for j in range(7,-1,-1): print(dec[j],end=" ") def bintodec(binaryarr): for i in range(0,len(binaryarr)): if binaryarr[i]==1: k=math.pow(2,i) print(k) elif binaryarr[i]==0: print() def mergesort(alist): if len(alist)>1: mid=len(alist)//2 lefthalf=alist[:mid] righthalf=alist[mid:] mergesort(lefthalf) mergesort(righthalf) print(mid) print(lefthalf) print(righthalf) for i in range(1,len(lefthalf)): for j in range(i): if lefthalf[j]> lefthalf[j+1]: temp=lefthalf[j] lefthalf[j]=lefthalf[j+1] lefthalf[j+1]=temp i+=1 print(lefthalf) for i in range(1,len(righthalf)): for j in range(i): if righthalf[j] > righthalf[j+1]: temp=righthalf[j] righthalf[j]=righthalf[j+1] righthalf[j+1]=temp print(righthalf) for i in range(1,len(alist)): for j in range(0,i): if alist[j]>alist[j+1]: temp=alist[j] alist[j]=alist[j+1] alist[j+1]=temp print(alist) def vendmac(notes): print("Amount Enterds into vebding machine",notes) no=[] n1=[1000,500,200,100,50,20,10,5,2,1] i=-1 while notes>=0: if i<len(n1)-1: i+=1 if notes>= n1[i]: notes=notes-n1[i] print(n1[i]) i=-1
Rohan2596/Python_1_moth
Python_1_Month/Algorithms_programs/AlogoUtility.py
AlogoUtility.py
py
4,962
python
en
code
0
github-code
6
26629807154
import random nomes = ["nome1","nome2","nome3","nome4","nome5","nome6","nome7","nome8","nome9","nome10","nome11","nome12","nome13","nome14","nome15"] qtd_times = 3 random.shuffle(nomes) separar_times = [nomes[i::qtd_times] for i in range(qtd_times)] times = list(separar_times) indice = 1 for time in times: print(f" Time {indice}: {time}") indice +=1
flaviofontes29/sorteio_divisao_times
Escolha_time.py
Escolha_time.py
py
361
python
pt
code
0
github-code
6
41380069765
from functools import wraps import time from utils.mics import colorstr def fun_run_time(func): ''' 装饰器,用于获取函数的执行时间 放在函数前,如 @fun_run_time() def xxx(): ''' @wraps(func)#可删去,是用来显示原始函数名的 def _inner(*args, **kwargs): s_time = time.time() ret = func(*args, **kwargs) e_time = time.time() # print(colorstr("\t----function [{}] costs {} s".format(func.__name__, e_time-s_time), 'yellow')) return ret return _inner def tic(): ''' 开始计时。 t = tic() ''' s_time = time.time() return s_time def toc(s_time, word='tic-toc', act_number = 1, mute=True): ''' 结束计时,返回毫秒数。 t = toc(t, '模块函数名', '处理次数', True)\n mute代表不打印。 ''' e_time = time.time() temp = int((e_time-s_time)*1000) if not mute: if act_number > 1: print(colorstr(f"\t----module [{word}] costs {temp} ms, for {act_number} actions, ({int(temp/act_number)}ms/action)", 'yellow')) else: print(colorstr(f"\t----module [{word}] costs {temp} ms", 'yellow')) return temp
Backlory/motionDetection
utils/timers.py
timers.py
py
1,229
python
en
code
0
github-code
6
10422312368
import math def main(): times = int(input()) local_best_length = 0.0000000000 best_length = 0.0000000000 for i in range(times): # test cases conjunt = int(input()) for j in range(conjunt): # number of conjunts robocopies = int(input()) list_points = [] for k in range(robocopies): # number of robocopies line = input() list_input = line.split() x = float(list_input[0]) y = float(list_input[1]) list_points.append((x, y)) for p in range(len(list_points)): for p1 in range(p + 1, len(list_points)): d = calc_distance_even(list_points[p], list_points[p1]) if d > 0: if d < local_best_length or local_best_length == 0.0: local_best_length = d if local_best_length > best_length or best_length == 0.0000000000: best_length = local_best_length local_best_length = 0.0000000000 print('{0:.10f}'.format(best_length)) def calc_distance_odd(p1, p2): if p1[0] == p2[0]: return p1[1] - p2[1] if p1[1] == p2[1]: return p1[0] - p2[0] d = math.sqrt(math.pow((p2[0] - p1[0]), 2) + math.pow((p2[1] - p1[1]), 2)) return d def calc_distance_even(p1, p2): if p1[0] == p2[0]: return p1[1] - p2[1] elif p1[1] == p2[1]: return p1[0] - p2[0] else: return 0 main()
epaes90/uri-problems
1625.py
1625.py
py
1,540
python
en
code
0
github-code
6
21764619292
# Approach 1: Backtracking with Trie class Solution: def findWords(self, board: List[List[str]], words: List[str]) -> List[str]: WORD_KEY = '$' trie = {} for word in words: node = trie for letter in word: node = node.setdefault(letter, {}) node[WORD_KEY] = word rowNum = len(board) colNum = len(board[0]) matchedWords = [] def backtrack(row, col, parent): letter = board[row][col] currNode = parent[letter] # check if we find a match word_match = currNode.pop(WORD_KEY, False) if word_match: matchedWords.append(word_match) # mark cell as visited board[row][col] = '#' # explore neighbors in 4 directions for rowOffset, colOffset in [(-1, 0), (0, 1), (1, 0), (0, -1)]: newRow, newCol = row + rowOffset, col + colOffset if newRow < 0 or newRow >= rowNum or newCol < 0 or newCol >= colNum: continue if not board[newRow][newCol] in currNode: continue backtrack(newRow, newCol, currNode) # end of exploration; restore the cell board[row][col] = letter # Optimization: incrementally remove the matched leaf node in Trie if not currNode: parent.pop(letter) for row in range(rowNum): for col in range(colNum): if board[row][col] in trie: backtrack(row, col, trie) return matchedWords
jimit105/leetcode-submissions
problems/word_search_ii/solution.py
solution.py
py
1,831
python
en
code
0
github-code
6
1008765012
'''Problem 37: Truncatable primes''' #g = open('primelist.txt','r') g = open('primes1.txt','r') print("g:",type(g),"Opened Prime list. Now reading it...") h = g.read() print("h: ",type(h),"Now splitting it into a list...") j = h.split() k = [int(x) for x in j] print("PrimeList is",len(j),"numbers long") print (k[:10]) primes = [x for x in k if str(x)[0] in ['3','7'] and str(x)[-1] in ['3','7']] print("The last 10 T-Primes are",primes[-10:]) '''for x in j: primes.append(int(x))''' def isTPrime(n): strn = str(n) strn = strn.replace(' ','') '''if int(strn[0]) in [1,5,9] or int(strn[-1]) in [1,5,9]: return False''' #print(strn,type(strn)) for i in range(len(strn)): if strn[:i] != '' and strn[i:] != '': print(strn[:i]) if int(strn[:i]) not in k: return False print(strn[i:]) if int(strn[i:]) not in k: return False return True '''tprimes = [p for p in primes if isTPrime(p)] tprimesInts = [int(p) for p in tprimes] print(tprimes,sum(tprimesInts))''' '''Output: g: <class '_io.TextIOWrapper'> Opened Prime list. Now reading it... h: <class 'str'> Now splitting it into a list... PrimeList is 1000000 numbers long [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] The last 10 T-Primes are [7999727, 7999753, 7999757, 7999787, 7999793, 7999813, 7999847, 7999913, 7999963, 7999993] [3, 7, 37, 73, 313, 317, 373, 797, 3137, 3797, 739397] 748251 '''
hackingmath/Project-Euler
euler37.py
euler37.py
py
1,521
python
en
code
0
github-code
6
27213609715
from collections import deque, defaultdict def bfs(n, adj): visited = [False] * (n+1) min_dist = [1e9] * (n+1) visited[1] = True min_dist[1] = 0 q = deque([1]) while q: cur = q.popleft() for a in adj[cur]: if not visited[a]: q.append(a) visited[a] = True min_dist[a] = min_dist[cur]+1 max_dist = max(min_dist[1:]) return min_dist.count(max_dist) def solution(n, edge): edge.sort() adj = defaultdict(list) for start, end in edge: adj[start].append(end) adj[end].append(start) return bfs(n, adj)
hammii/Algorithm
Programmers_python/가장_먼_노드.py
가장_먼_노드.py
py
677
python
en
code
2
github-code
6
42739931950
import os import pickle import shutil import numpy as np from tqdm import tqdm import time class ModelManager: ''' Model manager is designed to load and save all models No matter what dataset name. ''' path_name = './checkpoints/' @classmethod def __init__(cls, cfg): if not cfg.MODEL.TRAINING and cfg.PATH.MODEL_PATH is not None: cls.path_name = cfg.PATH.MODEL_PATH elif cfg.MODEL.TRAINING and cfg.MODEL.MODEL_NAME: cls.path_name += cfg.MODEL.MODEL_NAME+"-"+ time.strftime("%Y_%m_%d__%H_%M_%S", time.localtime()) +'/' cfg.PATH.MODEL_PATH = cls.path_name else: raise Exception('Model path initialization error, please check your config.py') def save_model(self, model, model_name): ''' Save model to model/ dir :param model: model to be saved :param model_name: model name :return: None ''' if 'pkl' not in model_name: model_name += '.pkl' if not os.path.exists('checkpoints'): os.makedirs('checkpoints') if not os.path.exists( self.path_name): os.makedirs(self.path_name) pickle.dump(model,open(self.path_name+model_name,'wb')) def save_config(self,cfg): ''' Save config to model/ dir as yaml file :param cfg: config :return: None ''' if not os.path.exists(self.path_name): os.makedirs(self.path_name) cfg.PATH.CONFIG_PATH = self.path_name+'config.yaml' with open(self.path_name+'config.yaml','w') as f: f.write(cfg.dump()) def load_model(self, model_name): ''' load model from model/ dir :param model_name: model name :return: model ''' if 'pkl' not in model_name: model_name += '.pkl' if not os.path.exists(self.path_name+model_name): raise Exception('Model not found %s'%(self.path_name+model_name)) return pickle.load(open(self.path_name+model_name,'rb')) def save_test_result(self,test_result): ''' Save test result to model/ dir :param test_result: test result, as txt file :return: None ''' if not os.path.exists(self.path_name): os.makedirs(self.path_name) with open(self.path_name+'test_result.txt','w') as f: for item in test_result: f.write(str(item)+'\n') @staticmethod def clean_workspace(): ''' clean model/ dir :return: None ''' if os.path.exists('checkpoints'): shutil.rmtree('checkpoints') def get_time_cost(begin_time, end_time): ''' get the time cost :param begin_time: the start time :param end_time: the end time :return: the time cost ''' time_cost = end_time - begin_time return "%d day %d hour %d minute %.2f second"%(time_cost // 86400, time_cost % 86400 // 3600, time_cost % 3600 // 60, time_cost % 60) def k_neighbors(sim_vector, k): ''' input the similarity matrix, the index of the user, and the k return the k nearest neighbor of the user :param sim_vector: the similarity matrix :param k: the k :return: the k nearest neighbor of the user and the similarity between the user and the neighbor ''' # get the similarity matrix sim_vector = sim_vector # get the k k = k # get the k nearest neighbor of the user neighbor = np.argsort(sim_vector)[-k-1:-1] neighbor_sim = np.sort(sim_vector)[-k-1:-1] # do not include the user itself return neighbor, neighbor_sim def get_score_matrix(train_rating,user_map,movie_map): ''' get the score matrix @param: train_rating, the train rating @param: user_map, the user map @param: movie_map, the movie map @return: score_matrix, the movie popularity, the movie count ''' print("<<<< begin to conduct the score matrix") score_matrix = np.zeros((len(user_map.keys()),len(movie_map.keys()))) movie_popular = np.zeros(len(movie_map.keys())) movie_count = len(movie_map.keys()) tqdm_process = tqdm(total=train_rating.shape[0]) for row in train_rating.itertuples(index=True,name="Pandas"): user = user_map[getattr(row,'userId')] movie = movie_map[getattr(row,'movieId')] rate = getattr(row,'rating') score_matrix[user][movie] = rate movie_popular[movie] += 1 tqdm_process.update(1) tqdm_process.close() print(">>>> end to conduct the score matrix") print("@ score matrix shape:",score_matrix.shape) print('movie_popular shape:',movie_popular.shape) print('movie_count:',movie_count) return score_matrix, movie_popular, movie_count def calculate_movie_similarity(train_set,pre_sim_calcul = False): ''' calculate the tfidf of the movies :param train_set: the train set, a tuple of (trainset,user_map,movie_map,movie_type_features) :return: score_matrix, movie_popular, movie_sim, movie_count ''' # get the train set train_rating, user_map, movie_map, movie_type_features = train_set score_matrix, movie_popular, movie_count = get_score_matrix(train_rating,user_map,movie_map) movie_sim= np.zeros((movie_count, movie_count)) if pre_sim_calcul: print("<<<< begin to conduct the movie similarity matrix") begin_time = time.time() # record the start time for i in tqdm(range(movie_count)): movie_sim[i][i] = 1 for j in range(i+1,movie_count): movie_sim[i][j] = cosine_similarity(movie_type_features[i],movie_type_features[j]) movie_sim[j][i] = movie_sim[i][j] end_time = time.time() # record the end time print(">>>> end to conduct the movie similarity matrix") print("@ time cost: %s"%get_time_cost(begin_time,end_time)) else: print("post calculate the similarity during prediction!") return score_matrix, movie_popular, movie_sim, movie_count,user_map,movie_map,movie_type_features def cosine_similarity(list1,list2): ''' calculate the cosine_similarity of list1 and list2 :param list1: the first list :param list2: the second list :return: the cosine_similarity ''' # get the number of common items assert(len(list1) == len(list2)) n = len(list1) assert(n > 0) # calculate the sum of the two lists sum1 = sum(list1*list2) # calculate the square of the two lists den = np.sqrt(sum(list1**2)) * np.sqrt(sum(list2**2)) # calculate the cosine similarity if den == 0: return 0 else: return sum1/den def calculate_user_sim_matrix(train_set,pre_sim_calcul = True): ''' calculate the similarity matrix between users :param train_set: the train set, a tuple of (trainset,user_map,movie_map,movie_type_features) """ :return: the score_matrix, the similarity matrix, movie_popular, movie_count ''' # conduct the score matrix print("<<<<<< begin to caculate the similarity matrix, the movie popularity and the movie count") train_rating, user_map, movie_map, movie_type_features = train_set score_matrix, movie_popular, movie_count = get_score_matrix(train_rating,user_map,movie_map) # get the similarity matrix between users user_sim_matrix = np.zeros((score_matrix.shape[0],score_matrix.shape[0])) if pre_sim_calcul: user_sim_matrix = get_user_sim_matrix(score_matrix) else: print("post calculate the similarity during prediction!") print(">>>> end to caculate the similarity matrix.") print('user_sim_matrix shape:',user_sim_matrix.shape) return score_matrix,user_sim_matrix, movie_popular, movie_count,user_map,movie_map,movie_type_features def get_user_sim_matrix(input_matrix): ''' get the similarity matrix between users with pearson similarity :param input_matrix: the input matrix with shape (n_users, n_items) :return: the similarity matrix ''' # get the shape of the input matrix begin_time = time.time() # record the start time print("<<<< begin to get the similarity matrix") input_matrix = np.array(input_matrix) # convert to numpy array print('input score matrix shape:',input_matrix.shape) # get the number of users n_users = input_matrix.shape[0] # calculate the similarity matrix between users with person similarity user_sim_matrix = np.zeros((n_users, n_users)) print('user_sim_matrix shape:',user_sim_matrix.shape) for i in tqdm(range(n_users)): user_sim_matrix[i][i] = 1 for j in range(i+1,n_users): user_sim_matrix[i][j] = pearson_sim(input_matrix[i],input_matrix[j]) user_sim_matrix[j][i] = user_sim_matrix[i][j] print(">>>> end to get the similarity matrix") end_time = time.time() # record the end time print('@ time cost: '+get_time_cost(begin_time, end_time)) return user_sim_matrix def pearson_sim(list1,list2): ''' calculate the pearson similarity between two lists :param list1: the first list :param list2: the second list :return: the pearson similarity ''' # get the number of common items assert len(list1) == len(list2) n = len(list1) assert n > 0 # calculate the sum of the two lists avg1 = sum(list1)/n avg2 = sum(list2)/n norm1 = list1 - avg1 norm2 = list2 - avg2 # calculate the sum of the two lists sum1 = sum(norm1*norm2) # calculate the square of the two lists den = np.sqrt(sum(norm1**2)) * np.sqrt(sum(norm2**2)) # calculate the pearson similarity if den == 0: return 0.0 else: return sum1/den def SSE_error(prediction,real_rating): ''' calculate the SSE error :param prediction: the prediction of the user :param real_rating: the real rating of the user :return: the SSE error ''' # get the prediction and the real rating prediction = np.array(prediction) real_rating = np.array(real_rating) # calculate the SSE error SSE = sum((prediction - real_rating)**2) return SSE if __name__ == '__main__': # test the similarity matrix from dataset import Dataset from config import cfg dataset = Dataset(cfg) train_set = dataset.get_trainset() a = pearson_sim(np.array([1,2,3,4,5]),np.array([1,2,3,4,5])) b = pearson_sim(np.array([1,2,3,4,5]),np.array([5,4,3,2,1])) print(a,b) score_matrix,user_sim_matrix, movie_popular, movie_count,user_map,movie_map = calculate_user_sim_matrix(train_set,pre_sim_calcul = False) pickle.dump(user_sim_matrix,open('user_map.pkl','wb')) pickle.dump(movie_map,open('movie_map.pkl','wb')) # print(user_sim_matrix, movie_popular, movie_count) # pickle.dump(train_set, open('./checkpoints\CF-2022_04_11__11_32_40/trainset.pkl', 'wb')) # pickle.dump(score_matrix,open('checkpoints\CF-2022_04_11__11_32_40\score_matrix.pkl','wb')) # test the model_manager # model_manager = ModelManager(cfg) # model_manager.clean_workspace() # model_manager.save_model(user_sim_matrix, 'user_sim_matrix') # model_manager.save_model(movie_popular, 'movie_popular') # model_manager.save_model(movie_count, 'movie_count') # d = model_manager.load_model('score_matrix') # a = model_manager.load_model('user_sim_mat') # b = model_manager.load_model('movie_popular') # c = model_manager.load_model('movie_count') # print(a[0:3],b,c,d[0:3]) # test the time cost # begin_time = time.time() # record the start time # time.sleep(3) # end_time = time.time() # record the end time # # print the time cost # print('@ time cost:',get_time_cost(begin_time,end_time))
Jack-Lio/RecommenderSystem
utls.py
utls.py
py
11,868
python
en
code
0
github-code
6
33344135925
import os import logging from pathlib import Path from llama_index import ( GPTSimpleVectorIndex, GPTSimpleKeywordTableIndex, SimpleDirectoryReader ) from llama_index.indices.composability import ComposableGraph # Initialise Logger logging.basicConfig(level=logging.INFO, format="[{asctime}] - {funcName} - {message}", style='{') logger = logging.getLogger("BUILD_INDEX") openai_api_key = os.environ.get('OPENAI_API_KEY') # Load Documents cv_root_directory = Path()/'data' for directory_index in range(1,4): document = SimpleDirectoryReader(cv_root_directory/f'cv{directory_index}').load_data() index = GPTSimpleVectorIndex.from_documents(document) index_file = Path()/'data'/f'cv_{directory_index}_index.json' # save index to disk index.save_to_disk(index_file) # Select one index to prove need for composability # load index from disk index = GPTSimpleVectorIndex.load_from_disk(cv_root_directory/'cv_1_index.json') # Query index spock_address = index.query("Where does Spock Sarek Live ?") logger.info(spock_address) uhura_address = index.query("Where does Uhura Live ?") logger.info(uhura_address) # Compose indices for query # Generate indices from files index_cv_1 = GPTSimpleVectorIndex.load_from_disk(cv_root_directory/'cv_1_index.json') index_cv_2 = GPTSimpleVectorIndex.load_from_disk(cv_root_directory/'cv_2_index.json') index_cv_3 = GPTSimpleVectorIndex.load_from_disk(cv_root_directory/'cv_3_index.json') # Write up summaries cv_1_summary="Curriculum Vitae of Nyota Uhura" cv_2_summary="Curriculum Vitae of Spock Sarek" cv_3_summary="Curriculum Vitae of James T. Kirk" # set query config query_configs = [ { "index_struct_type": "simple_dict", "query_mode": "default", "query_kwargs": { "similarity_top_k": 1 } }, { "index_struct_type": "keyword_table", "query_mode": "simple", "query_kwargs": {} }, ] index_all_cvs = ComposableGraph.from_indices( GPTSimpleKeywordTableIndex, [index_cv_1, index_cv_2, index_cv_3], index_summaries=[cv_1_summary, cv_2_summary, cv_3_summary], max_keywords_per_chunk=50 ) # Query again across indices spock_address = index_all_cvs.query("Where does Spock Sarek Live ?") uhura_actress = index_all_cvs.query("Who played Nyota Uhura ?") kirk_players = index_all_cvs.query("Where has James Kirk been portrayed ?") logger.info(spock_address) logger.info(uhura_actress) logger.info(kirk_players)
gilgamesh7/iliad_llama
04_local_data_update_index.py
04_local_data_update_index.py
py
2,482
python
en
code
0
github-code
6
24988570911
from osv import fields, osv class account_journal_simulation(osv.osv): _name = "account.journal.simulation" _description = "Simulation level" _columns = { 'name': fields.char('Simulation name', size=32, required=True), 'code': fields.char('Simulation code', size=8, required=True), } _sql_constraints = [ ('code_uniq', 'unique (code)', 'The code of the simulation must be unique !') ] _order = "name" account_journal_simulation() def _state_simul_get(self, cr, uid, context={}): obj = self.pool.get('account.journal.simulation') ids = obj.search(cr, uid, []) res = obj.read(cr, uid, ids, ['code', 'name'], context) return [('valid','Base')]+ [(r['code'], r['name']) for r in res] class account_journal(osv.osv): _inherit = "account.journal" _columns = { 'state': fields.selection(_state_simul_get, 'Status', required=True), 'parent_ids': fields.many2many('account.journal', 'account_journal_simulation_rel', 'journal_src_id', 'journal_dest_id', 'Child journals'), 'child_ids': fields.many2many('account.journal', 'account_journal_simulation_rel', 'journal_dest_id', 'journal_src_id', 'Parent journal'), } _defaults = { 'state': lambda self,cr,uid,context: 'valid' } account_journal() class account_move_line(osv.osv): _inherit = "account.move.line" def search_not_run(self, cr, uid, crit, offset=0, limit=None, order=None, context={}): if not 'fiscalyear' in context: context['fiscalyear'] = self.pool.get('account.fiscalyear').find(cr, uid) ok = True for c in crit: if c[0]=='journal_id': ok = False break if 'journal_id' in context: ok=False if ok: plus = '' for state in context.get('journal_state', []): plus+=",'"+state+"'" cr.execute("select id from account_journal where state in ('valid'"+plus+")") crit.append(('journal_id', 'in', map(lambda x: x[0], cr.fetchall()))) res = super(account_move_line, self).search(cr, uid, crit, offset, limit, order, context) return res def _query_get(self, cr, uid, obj='l', context={}): res = super(account_move_line, self)._query_get(cr, uid, obj, context) if context.get('journal_state', []): plus = " and ("+obj+".journal_id in (select id from account_journal where state in ('valid', "+','.join(map(lambda x: "'"+x+"'", context['journal_state']))+")))" else: plus = " and ("+obj+".journal_id in (select id from account_journal where state='valid'))" return res+plus account_move_line() # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
factorlibre/openerp-extra-6.1
account_simulation/account_simulation.py
account_simulation.py
py
2,781
python
en
code
9
github-code
6
10548067106
#!/usr/bin/env python3 """ From a set of zone transits representing trips between stops, work out the effective trip time for a passenger arriving at the the origin every minute from the departure time of the first bus to the departure time of the last one """ import collections import datetime import logging import sys import csv import isodate zones = ['milton_pandr_south', 'milton_pandr_north'] logger = logging.getLogger('__name__') header = [ 'Passenger_Arrival', 'Passenger_Wait', 'Bus_Departure', 'Bus_Arrival', 'Bus_Duration', 'Bus_Interval', 'Passenger_Duration', ] def process_zones(): for zone in zones: logger.debug('Processing %s', zone) # Read in... in_filename = 'transits-{}.csv'.format(zone) logger.info('Reading %s', in_filename) with open(in_filename, 'r', newline='') as in_file: input = csv.reader(in_file, dialect='excel', quoting=csv.QUOTE_ALL) next(input) # Skip headers previous_depart = None trip_table = collections.OrderedDict() for row in input: trip = {} raw_arrive, raw_duration, raw_distance = row trip['arrive'] = isodate.parse_datetime(raw_arrive) trip['duration'] = datetime.timedelta(seconds=float(raw_duration)) trip['depart'] = trip['arrive'] - trip['duration'] day = trip['depart'].date() trip['distance'] = float(raw_distance) trip['interval'] = (trip['depart'] - previous_depart).total_seconds() if previous_depart else None if day not in trip_table: trip_table[day] = [] trip_table[day].append(trip) previous_depart = trip['depart'] # ... write out step = datetime.timedelta(minutes=1) out_filename = 'trips-{}.csv'.format(zone) logger.info('writing %s', out_filename) with open(out_filename, 'w', newline='') as out_file: output = csv.writer(out_file, dialect='excel', quoting=csv.QUOTE_ALL) output.writerow(header) for day in trip_table: logger.info('Processing %s %s', zone, day) todays_trips = trip_table[day] # Find the minute before the first bus of the day start = todays_trips[0]['depart'].replace(second=0) # And the last departure of the day end = todays_trips[-1]['depart'] logger.debug("Start %s, end %s, step %s", start, end, step) # Step through the day from 'start' to 'end' in steps of 'step' # Find the next bus to depart after 'start' while start < end: # Find first departure after 'start' for row in todays_trips: logger.debug("row depart: %s, start: %s", row['depart'], start) if row['depart'] > start: wait = int((row['depart'] - start).total_seconds()) traveling = int((row['duration']).total_seconds()) trip_duration = wait + traveling output.writerow([ start, wait, row['depart'], row['arrive'], traveling, row['interval'], trip_duration, ]) break else: logger.error("No bus for a departure at %s", start) start = start + step def main(): logging.basicConfig(format='%(asctime)s %(message)s', level=logging.INFO) logger.info('Start') process_zones() logger.info('Stop') if __name__ == "__main__": main()
SmartCambridge/milton_road_study
initial_investigation/expand_transits.py
expand_transits.py
py
4,037
python
en
code
0
github-code
6
22799615615
from django.shortcuts import render from django.http import HttpResponse from myapp.models import City,Country,Person from myapp.forms import PersonForm from django.shortcuts import redirect # Create your views here. def index(request): country=Country.objects.all() context={ 'country':country, } #return HttpResponse("hey%s"%slug) return render(request, 'myapp/home.html', context) def add_person(request): if request.method=="POST": form=PersonForm(request.POST) if form.is_valid(): form.save() return redirect("/") else: form=PersonForm() context={ 'form':form, } return render(request, 'myapp/person.html', context) def get_city(request,id): opt2_html = "" try: country=Country.objects.get(pk = id) city = City.objects.filter(country_id = country.id) # make_models = company.makemodel_set.all() for c in city: opt2_html += "<option value='"+str(c.id)+"'>"+c.name+"</option>" print(opt2_html) context={ 'country':country, 'city':city, } except: write_exception("Error in fetching options 2") return HttpResponse(opt2_html) # return render(request, 'myapp/home.html', context)
pappubca005/dynamic-dropdown
myapp/views.py
views.py
py
1,346
python
en
code
0
github-code
6
20289549716
from stat_arb.src.data_loader.dao.dataframe.RawPostgresSampledDataLoader import RawPostgresSampledDataLoader from stat_arb.src.data_loader.dao.dataframe.ClickhouseTradesDataLoader import ClickhouseTradesDataLoader from stat_arb.src.data_loader.database import database_config from datetime import datetime from stat_arb.src.data_loader.general.Interval import Interval from stat_arb.src.data_loader.general.SamplingSchemas import SamplingSchemas from static_data import PATH # queries = [ # {'source': 'MOEX_DIRECT', 'instrument': 'USD/RUB_T+1', 'size': 1_000_000}, # {'source': 'MOEX_DIRECT', 'instrument': 'EUR/USD_T+1', 'size': 1_000_000}, # {'source': 'MOEX_DIRECT', 'instrument': 'CNH/RUB_T+1', 'size': 1_000_000}, # {'source': 'RBI', 'instrument': 'EUR/USD_T+2', 'size': 1_000_000}, # {'source': 'RBI', 'instrument': 'USD/CNH_T+2', 'size': 1_000_000}, # ] queries = [ {'source': 'MOEX', 'instrument': 'USD/RUB_T+1', 'size': 3_000_000} ] interval = Interval(datetime(2021, 1, 1), datetime(2021, 12, 31)) def load_data(query: dict, interval: Interval): print('loading:\n', query, '\n', interval, '\n') with database_config.sql_engine_fxet_db1.connect() as connection: loader = RawPostgresSampledDataLoader(connection.connection.connection) vwap = loader.load_vwap_for_interval(query['source'], query['instrument'], interval, SamplingSchemas.FIRST_PRICE_PREDICTION_SCHEMA, query['size']) return vwap if __name__ == '__main__': for q in queries: source = q['source'].split('_')[0].lower() instrument = q['instrument'].split('_')[0].replace('/', '').upper() spot_data = load_data(q, interval) spot_data.to_csv(f'{PATH}/{source}/{instrument}.csv')
v-buchkov/statistical_arbitrage_backtester
download_hourly_data.py
download_hourly_data.py
py
1,939
python
en
code
2
github-code
6
15398422361
# Реализуйте RLE алгоритм: реализуйте модуль сжатия и восстановления данных. # Входные и выходные данные хранятся в отдельных текстовых файлах. def get_coding(text): with open(text, 'r') as data: txt = data.readline() count = 1 res = '' for i in range(len(txt)-1): if txt[i] == txt[i+1]: count += 1 else: res = res + str(count) + txt[i] count = 1 if count > 1 or (txt[len(txt)-2] != txt[-1]): res = res + str(count) + txt[-1] with open('coding.txt', 'w') as data: data.write(res) def get_decoding(text): with open(text, 'r') as data: txt = data.readline() number = '' res = '' for i in range(len(txt)): if not txt[i].isalpha(): number += txt[i] else: res = res + txt[i] * int(number) number = '' with open('decoding.txt', 'w') as data: data.write(res) return res get_coding('text.txt') get_decoding('coding.txt')
iiiivanCh/dz05python
task05_04.py
task05_04.py
py
1,135
python
ru
code
0
github-code
6
73439288188
import argparse from subcommands.setup.parser import parser as setup_parser from subcommands.export.parser import parser as export_parser from subcommands.info.parser import parser as info_parser from subcommands.process.parser import parser as process_parser from subcommands.prune.parser import parser as prune_parser from subcommands.version.parser import parser as version_parser if __name__ == "__main__": parser = argparse.ArgumentParser( description='Runs data processing live for incoming data' ) subparsers = parser.add_subparsers() subparsers.add_parser( name='setup', help='Generate config files for setting up Hotspur', parents=[setup_parser] ) subparsers.add_parser( name='process', help='Automatically find and process EM data', parents=[process_parser] ) subparsers.add_parser( name='info', help='Retrieve info about projects and sessions', parents=[info_parser] ) subparsers.add_parser( name='export', help='Export data alongside Relion metadata star files', parents=[export_parser] ) subparsers.add_parser( name='prune', help='Remove processed data and databases for projects or sessions', parents=[prune_parser] ) subparsers.add_parser( name='version', help='Print the current version', parents=[version_parser] ) args = parser.parse_args() if 'config' in args: from utils.config import load_config load_config(args.config) if 'func' in args: args.func(args) else: parser.print_help()
zruan/hotspur_command
hotspur.py
hotspur.py
py
1,681
python
en
code
0
github-code
6
27578228523
#!/usr/bin/env python3 import argparse import configparser from pathlib import Path from rich import console import sys sys.path.append("/home/vermin/IdeaProjects/summalarva") from summalarva.openai_client import OpenAIClient from summalarva.orgnoter import OrgNoter console = console.Console() config = configparser.ConfigParser() argparser = argparse.ArgumentParser() argparser.add_argument("input", type=str, help="Input file") argparser.add_argument("--config", type=str, help="Config file") args = argparser.parse_args() input_path = Path(args.input).expanduser() if args.config: config.read(args.config) else: config.read(Path("~/.config/summalarva.ini").expanduser()) openai_api_key = config["openai"]["api_key"] if config["openai"]["host"]: openai_host = config["openai"]["host"] openai_client = OpenAIClient(openai_api_key, openai_host) else: openai_client = OpenAIClient(openai_api_key) console.print("Start processing file", args.input) summarises = openai_client.summarize_document(args.input) try: org_noter = OrgNoter(args.input) for page_num,summary in summarises.items(): org_noter.page_summarize_model_append(page_num, summary) console.print("Start create org noter") org_noter.create_note() except Exception as e: raise e summary_text = "" for page_num, summary in summarises.items(): summary_text += f"Page {page_num}\n\n{summary}\n\n" with open("summary.txt", "w") as f: f.write(summary_text)
nhannht/summalarva
summalarva/summarize_pdf.py
summarize_pdf.py
py
1,484
python
en
code
1
github-code
6
36621325200
import pygame import sys from moviepy.editor import VideoFileClip from PIL import Image pygame.init() music_background = pygame.mixer.music.load("assets/LostCompanionTomboFry.mp3") pygame.mixer.music.play() pygame.mixer.music.set_volume(0.2) lar = 550 hut = 700 screen = pygame.display.set_mode((lar, hut)) pygame.display.set_caption("Menu") gif_path = "assets/bg.gif" clip = VideoFileClip(gif_path) fps = clip.fps frames = [] for t in range(0, int(clip.duration * fps)): frame = clip.get_frame(t / fps) pil_image = Image.fromarray((frame * 255).astype('uint8')) pil_image = pil_image.resize((lar, hut)) pygame_image = pygame.image.fromstring(pil_image.tobytes(), pil_image.size, pil_image.mode) frames.append(pygame_image) # Carregar recursos do menu antecipadamente fonte = pygame.font.Font(None, 30) texto_play = fonte.render("Play", True, (0, 0, 0)) texto_quit = fonte.render("Quit", True, (0, 0, 0)) Title = fonte.render("Pythongoras-Game", True, (255, 255, 255)) def mostrar_menu(): frame_index = 0 clock = pygame.time.Clock() while True: for evento in pygame.event.get(): if evento.type == pygame.QUIT: pygame.quit() sys.exit() elif evento.type == pygame.MOUSEBUTTONDOWN: if batom_play.collidepoint(evento.pos): pygame.time.delay(100) iniciar_jogo() elif batom_quit.collidepoint(evento.pos): pygame.quit() sys.exit() screen.blit(frames[frame_index], (0, 0)) batom_Title = pygame.Rect(190, 100 + 50, 150, 50) pos_text_Title = Title.get_rect(center=batom_Title.center) screen.blit(Title, pos_text_Title) batom_play = pygame.Rect(lar/2 - 75, hut/2 + 50, 150, 50) pygame.draw.rect(screen, (255, 255, 255), batom_play) pos_text_play = texto_play.get_rect(center=batom_play.center) screen.blit(texto_play, pos_text_play) if batom_play.collidepoint(pygame.mouse.get_pos()): pygame.draw.rect(screen, (200, 200, 200), batom_play) batom_quit = pygame.Rect(lar/2 - 75, hut/2 + 140, 150, 50) pygame.draw.rect(screen, (255, 255, 255), batom_quit) pos_text_quit = texto_quit.get_rect(center=batom_quit.center) screen.blit(texto_quit, pos_text_quit) if batom_quit.collidepoint(pygame.mouse.get_pos()): pygame.draw.rect(screen, (200, 200, 200), batom_quit) pygame.display.flip() frame_index = (frame_index + 1) % len(frames) clock.tick(fps) def iniciar_jogo(): print("O jogo começou!") import Chose mostrar_menu()
RuFiripo/Pythongoras-Game
menu.py
menu.py
py
2,712
python
en
code
0
github-code
6
32100325594
import jittor as jt from jittor import Module from jittor import nn import pygmtools as pygm import numpy as np import parameter class AlexNet(Module): def __init__(self, *args, **kw) -> None: super().__init__(*args, **kw) self.padsize = parameter.parameters().pad self.kernel_size = parameter.parameters().kernel_size self.side_len = parameter.parameters().side_len self.CNNoutSize = int(self.side_len / 2 + self.padsize - (self.kernel_size - 1) / 2) self.layer1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=self.kernel_size, stride=1, padding=self.padsize), ) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.layer2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1), ) self.fc = nn.Sequential( nn.Linear(in_features=self.CNNoutSize*self.CNNoutSize*32, out_features=128), nn.Relu(), nn.Linear(in_features=128, out_features=16) ) def execute(self, x) -> None: x = self.layer1(x) x = self.pool(x) x = self.layer2(x) x = x.view(-1, self.CNNoutSize*self.CNNoutSize*32) x = self.fc(x) return x class Net(Module): def __init__(self, sinkhorn_norm) -> None: pygm.BACKEND = 'jittor' self.slice = parameter.parameters().slice**2 self.side_len = parameter.parameters().side_len if (sinkhorn_norm): self.execute = self.execute_sinkhorn else: self.execute = self.execute_sigmoid self.AlexNet = AlexNet() self.fc = nn.Sequential( nn.Linear(in_features=self.slice*16, out_features=64), nn.ReLU(), nn.Linear(in_features=64, out_features=self.slice ** 2), ) def execute_sinkhorn(self, input) -> None: x = input x = jt.reshape(x, (-1, 3, self.side_len, self.side_len)) x = self.AlexNet(x) x = jt.reshape(x, (-1, self.slice*16)) x = self.fc(x) x = jt.reshape(x, (-1, self.slice, self.slice)) x = pygm.sinkhorn(x) return x def execute_sigmoid(self, input) -> None: x = input x = jt.reshape(x, (-1, 3, self.side_len, self.side_len)) x = self.AlexNet(x) x = jt.reshape(x, (-1, self.slice*16)) x = self.fc(x) x = jt.nn.Sigmoid()(x) x = jt.reshape(x, (-1, self.slice, self.slice)) return x
kizunawl/SJTU-AI-courses
Deep Learning/Task4/model.py
model.py
py
2,616
python
en
code
1
github-code
6
28383267446
import copy import functools import os import random import torch import torch.nn.functional as F import blobfile as bf import torchvision.utils as vutils import numpy as np import torch as th import torch.distributed as dist from torch.nn.parallel.distributed import DistributedDataParallel as DDP from torch.optim import Adam from ..models.unet.fp16_util import zero_grad from tqdm import tqdm from ..utils import dist_util import matplotlib.pyplot as plt from .plotters import ImPlotter from .config_getters import get_model class IPFStepBase(th.nn.Module): def __init__( self, model, forward_diffusion, backward_diffusion, data_loader, prior_loader, cache_data_loader = None, args = None, forward_model = None, cache_loader = False, resume_checkpoint = 0, checkpoint_directory = './', plot_directory = './', ): super().__init__() self.set_seed(dist.get_rank()+0) ema_rate = args.ema_rate save_interval=args.save_interval lr_anneal_steps = 0 self.args = args self.model = model self.forward_diffusion = forward_diffusion self.backward_diffusion = backward_diffusion self.forward_model = forward_model self.prior_loader = prior_loader self.data_loader = data_loader self.cache_data_loader = cache_data_loader self.num_steps = self.args.nit self.num_iter = self.args.num_iter self.lr_anneal_steps = lr_anneal_steps self.batch_size = self.args.batch_size self.cache_loader = cache_loader self.cache_refresh = self.args.cache_refresh_stride self.lr = self.args.lr self.classes = self.args.num_data_classes > 0 self.weight_decay = self.args.weight_decay self.ema_rate = ( [ema_rate] if isinstance(ema_rate, float) else [float(x) for x in ema_rate.split(",")] ) self.save_interval = save_interval self.checkpoint_dir = checkpoint_directory self.plot_dir = plot_directory self.plotter = ImPlotter(im_dir=self.plot_dir, plot_level=1) self.step = 0 self.resume_step = resume_checkpoint self.resume_checkpoint = resume_checkpoint self.global_batch = self.batch_size * dist.get_world_size() self.model_params = list(self.model.parameters()) self.master_params = self.model_params self.sync_cuda = th.cuda.is_available() self._load_and_sync_parameters() # Optimizers self.opt = Adam(self.master_params, lr=self.lr) if self.resume_step: self._load_optimizer_state() # Model was resumed, either due to a restart or a checkpoint # being specified at the command line. self.ema_params = [ self._load_ema_parameters(rate) for rate in self.ema_rate ] else: self.ema_params = [ copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate)) ] if th.cuda.is_available(): self.use_ddp = True self.ddp_model = DDP( self.model, device_ids=[dist_util.dev()], output_device=dist_util.dev(), broadcast_buffers=False, bucket_cap_mb=128, find_unused_parameters=False, ) else: if dist.get_world_size() > 1: self.use_ddp = False self.ddp_model = self.model def _load_and_sync_parameters(self): resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint if resume_checkpoint: self.resume_step = parse_resume_step_from_filename(resume_checkpoint) if dist.get_rank() == 0: self.model.load_state_dict( dist_util.load_state_dict( resume_checkpoint, map_location=dist_util.dev() ) ) dist_util.sync_params(self.model.parameters()) def _load_ema_parameters(self, rate): ema_params = copy.deepcopy(self.master_params) main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate) if ema_checkpoint: if dist.get_rank() == 0: state_dict = dist_util.load_state_dict( ema_checkpoint, map_location=dist_util.dev() ) ema_params = self._state_dict_to_master_params(state_dict) dist_util.sync_params(ema_params) return ema_params def _load_optimizer_state(self): main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint opt_checkpoint = bf.join( bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt" ) if bf.exists(opt_checkpoint): state_dict = dist_util.load_state_dict( opt_checkpoint, map_location=dist_util.dev() ) self.opt.load_state_dict(state_dict) def optimize_step(self): #self._anneal_lr() # if self.args.grad_clipping: # clipping_param = self.args.grad_clip # total_norm = torch.nn.utils.clip_grad_norm_(self.model.parameters(), clipping_param) self.opt.step() for rate, params in zip(self.ema_rate, self.ema_params): update_ema(params, self.master_params, rate=rate) def _anneal_lr(self): if not self.lr_anneal_steps: return frac_done = (self.step + self.resume_step) / self.lr_anneal_steps lr = self.lr * (1 - frac_done) for param_group in self.opt.param_groups: param_group["lr"] = lr def save(self): if dist.get_rank() == 0: self.set_seed(0) init_samples, labels = next(self.prior_loader) init_samples = init_samples.to(dist_util.dev()) labels = labels.to(dist_util.dev()) if labels is not None else None sample_model = get_model(self.args) for rate, params in zip(self.ema_rate, self.ema_params): state_dict = self._master_params_to_state_dict(params) sample_model.load_state_dict(state_dict) sample_model = sample_model.to(dist_util.dev()) x_tot_plot = self.backward_diffusion.sample(init_samples, labels, t_batch=None, net=sample_model) filename = 'ema{0}_step{1}.png'.format(rate, self.step) self.plotter.plot(init_samples, x_tot_plot, filename) sample_model = None torch.cuda.empty_cache() # init_samples, labels = next(self.data_loader) # init_samples = init_samples.to(dist_util.dev()) # labels = labels.to(dist_util.dev()) if labels is not None else None # x_tot_plot = self.forward_diffusion.sample(init_samples, labels, t_batch=None, net=self.forward_model) # filename = 'sample{0}_step{1}.png'.format(rate, self.step) # self.plotter.plot(init_samples, x_tot_plot, filename) def save_checkpoint(rate, params): state_dict = self._master_params_to_state_dict(params) if dist.get_rank() == 0: if not rate: filename = f"model{(self.step+self.resume_step):06d}.pt" else: filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt" with bf.BlobFile(bf.join(self.checkpoint_dir, filename), "wb") as f: th.save(state_dict, f) save_checkpoint(0, self.master_params) for rate, params in zip(self.ema_rate, self.ema_params): save_checkpoint(rate, params) if dist.get_rank() == 0: with bf.BlobFile( bf.join(self.checkpoint_dir, f"opt{(self.step+self.resume_step):06d}.pt"), "wb", ) as f: th.save(self.opt.state_dict(), f) dist.barrier() def _master_params_to_state_dict(self, master_params): state_dict = self.model.state_dict() for i, (name, _value) in enumerate(self.model.named_parameters()): assert name in state_dict state_dict[name] = master_params[i] return state_dict def _state_dict_to_master_params(self, state_dict): params = [state_dict[name] for name, _ in self.model.named_parameters()] return params def log_step(self): return def get_blob_logdir(self): return self.plot_dir def set_seed(self, seed=0): torch.manual_seed(seed) random.seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) def parse_resume_step_from_filename(filename): """ Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the checkpoint's number of steps. """ split = filename.split("model") if len(split) < 2: return 0 split1 = split[-1].split(".")[0] try: return int(split1) except ValueError: return 0 def find_resume_checkpoint(): # On your infrastructure, you may want to override this to automatically # discover the latest checkpoint on your blob storage, etc. return None def find_ema_checkpoint(main_checkpoint, step, rate): if main_checkpoint is None: return None filename = f"ema_{rate}_{(step):06d}.pt" path = bf.join(bf.dirname(main_checkpoint), filename) if bf.exists(path): return path return None def update_ema(target_params, source_params, rate=0.99): """ Update target parameters to be closer to those of source parameters using an exponential moving average. :param target_params: the target parameter sequence. :param source_params: the source parameter sequence. :param rate: the EMA rate (closer to 1 means slower). """ for targ, src in zip(target_params, source_params): targ.detach().mul_(rate).add_(src, alpha=1 - rate)
JTT94/schrodinger_bridge
bridge/trainer/ipf_base.py
ipf_base.py
py
10,216
python
en
code
0
github-code
6
40024543800
import datetime,time,os,sys if(sys.platform.lower().startswith('linux')): OS_TYPE = 'linux' elif(sys.platform.lower().startswith('mac')): OS_TYPE = 'macintosh' elif(sys.platform.lower().startswith('win')): OS_TYPE = 'windows' else: OS_TYPE = 'invalid' # Get our current directory OUTPUT_FILE_DIRECTORY = os.getcwd() def find_all(a_str, sub): """ Returns the indexes of {sub} where they were found in {a_str}. The values returned from this function should be made into a list() before they can be easily used. Last Update: 03/01/2017 By: LB023593 """ start = 0 while True: start = a_str.find(sub, start) if start == -1: return yield start start += 1 # Create variables for all the paths if((OS_TYPE == 'windows')): # Clear Screen Windows os.system('cls') directories = list(find_all(OUTPUT_FILE_DIRECTORY,'\\')) OUTPUTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\outputs\\' INPUTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\inputs\\' SCRIPTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\scripts\\' MODULES_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\modules\\' MODULES_GITHUB_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\modules\\github\\' CLASSES_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '\\classes\\' elif((OS_TYPE == 'linux') or (OS_TYPE == 'macintosh')): # Clear Screen Linux / Mac os.system('clear') directories = list(find_all(OUTPUT_FILE_DIRECTORY,'/')) OUTPUTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/outputs/' INPUTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/inputs/' SCRIPTS_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/scripts/' MODULES_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/modules/' MODULES_GITHUB_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/modules/github/' CLASSES_DIR = OUTPUT_FILE_DIRECTORY[:directories[-1]] + '/classes/' # OS Compatibility for importing Class Files if((OS_TYPE == 'linux') or (OS_TYPE == 'macintosh')): sys.path.insert(0,'../classes/') sys.path.insert(0,MODULES_DIR) elif((OS_TYPE == 'windows')): sys.path.insert(0,'..\\classes\\') sys.path.insert(0,MODULES_DIR) # < --- Begin Custom Classes Import --- > # Custom Colors for printing to the screen from custom_colors import * from benchmark import * from crypto_pairs import * from command_line_arguments import * from pseudothreading import * from tracking import * from pretty_formatting import * # < --- End Custom Classes Import --- > # Time all the things! runtime = Benchmark() # Text Coloration cc = ColoredText(['exchange'],['38;5;214m']) # Get parameters from commandline parameters = Parse() # Define what we're expecting to be passed in parameters.add_expectation('-crypto-main', 'string', True, False) parameters.add_expectation('-crypto-alt', 'string', True, False) # Assign passed in values parameters.parse_commandline() # Check expectations were met parameters.validate_requirements() # World Reserve Crypto main = parameters.get_parameter('-crypto-main').value # Poor wanna be Crypto alt = parameters.get_parameter('-crypto-alt').value master = Metrics(main, alt) selling, buying = master.call_order_book('binance') # keys # ['symbol', 'timestamp', 'datetime', 'high', 'low', 'bid', 'bidVolume', 'ask', 'askVolume', 'vwap', 'open', 'close', 'last', 'previousClose', 'change', 'percentage', 'average', 'baseVolume', 'quoteVolume', 'info'] ticker = master.call_fetch_ticker('binance') print("\n bid:\t" + format(ticker['DOGE/BTC']['bid'], '.8f')) print(" bidVolume:\t" + str(ticker['DOGE/BTC']['bidVolume'])) print(" ask:\t" + format(ticker['DOGE/BTC']['ask'], '.8f')) print(" askVolume:\t" + str(ticker['DOGE/BTC']['askVolume'])) print("") print(buying) print("") #print(buying[ticker['DOGE/BTC']['bid']]) print(str(buying[0][1]) + " @ " + format(buying[0][0],'.8f')) print(buying[-1]) print("Buying:") for counter in range(5,-1,-1): print(str(buying[counter][1]) + " @ " + format(buying[counter][0],'.8f')) print("") print("Selling:") for counter in range(0,5): print(str(selling[counter][1]) + " @ " + format(selling[counter][0],'.8f')) #https://www.binance.com/en/trade/DOGE_BTC
isajediknight/Sleep-Is-Overrated
scripts/watch_v4.py
watch_v4.py
py
4,274
python
en
code
0
github-code
6
8407981184
from abc import ABC, abstractmethod import threading import boto3 import botocore import sys import logging import logging.config from enum import Enum from itertools import cycle from botocore.config import Config from botocore.endpoint import MAX_POOL_CONNECTIONS from collections.abc import Iterable class AWS_SVC_BASE(ABC): ''' Represent an AWS service that contain multiple resources(workers) ''' aws_config = Config( retries=dict( total_max_attempts=25, mode='adaptive' ), max_pool_connections=MAX_POOL_CONNECTIONS, ) def __init__(self, svc_type, session, svc_config): if not isinstance(session, boto3.Session): logging.error('session must be of type boto3.Session') raise(ValueError) if not isinstance(svc_type, AWS_SVC_TYPE): logging.error('svc_type must be of type AWS_SVC_TYPE') raise(ValueError) if not isinstance(svc_config, dict): logging.error('svc_config must be of type AWS_SVC_TYPE') raise(ValueError) self.session = session self.account_id = 0 self.service_type = svc_type self.svc_config = svc_config self.rsc_prefix = svc_config['resource_prefix'] self._key_lock = threading.Lock() self.worker_cycle = cycle(list()) super().__init__() @abstractmethod def get_existing_workers(self): ''' Query the existing workers based on the rsc_prefix ''' # pass @abstractmethod def create_workers(self): ''' Create workers/resources of this service ''' # pass @abstractmethod def delete_workers(self): ''' Delete the workers created by create_workers() function ''' # pass @abstractmethod def _check_existing_identity(self, identiy_arn): ''' Check if identiy_arn exists in AWS ''' # pass def check_existing_user(self, aws_id, target_user, aws_partition = 'aws'): ''' Check if the target_user exists in AWS account aws_id ''' user_arn = 'arn:{}:iam::{}:user/{}'.format(aws_partition, aws_id, target_user) return self._check_existing_identity(user_arn) def check_existing_role(self, aws_id, target_role, aws_partition = 'aws'): ''' Check if the target_role exists in AWS account aws_id ''' role_arn = 'arn:{}:iam::{}:role/{}'.format(aws_partition, aws_id, target_role) return self._check_existing_identity(role_arn) def precheck(self): ''' Check if there is at least one resrouce to perform the test ''' # If no object is in the cycle, the default value None will be returned if next(self.worker_cycle, None) is None: return False return True def _get_next_worker(self): with self._key_lock: try: return next(self.worker_cycle) except StopIteration: logging.error('Empty worker cycle') return None def _set_worker_cycle(self, iterable_obj): if not isinstance(iterable_obj, Iterable): logging.error('set_worker_cycle function expects an Iterable input') return self.worker_cycle = cycle(iterable_obj) def _check_boto3_response(self, resp): return 'ResponseMetadata' in resp and resp['ResponseMetadata']['HTTPStatusCode'] >= 200 and resp['ResponseMetadata']['HTTPStatusCode'] < 300 def _enable_logging(self): logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': True, }) logging.basicConfig(level=logging.DEBUG, format='%(module)s: %(message)s') class AWS_SVC_TYPE(Enum): IAM = 'iam' S3 = 's3' KMS = 'kms' SQS = 'sqs'
prisma-cloud/IAMFinder
aws_svc/aws_service_base.py
aws_service_base.py
py
3,839
python
en
code
102
github-code
6
38381779624
# 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素。 # 说明: # 你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数。 # 示例 1: # 输入: root = [3,1,4,null,2], k = 1 # 3 # / \ # 1 4 # \ #   2 # 输出: 1 # 示例 2: # 输入: root = [5,3,6,2,4,null,null,1], k = 3 # 5 # / \ # 3 6 # / \ # 2 4 # / # 1 # 输出: 3 # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None # Simple idea of combining dfs and quicksort. # High time and memory cost. class Solution0: def kthSmallest(self, root: TreeNode, k: int) -> int: def dfs(root, res): res.append(root.val) if root.left != None: dfs(root.left, res) if root.right != None: dfs(root.right, res) res = [] dfs(root, res) def quicksort(seq, low, high): i = low j = high if low < high: base = seq[low] while i < j: while seq[j] > base and j > i: j -= 1 if j > i: seq[i] = seq[j] i += 1 while seq[i] < base and i < j: i += 1 if i < j: seq[j] = seq[i] j -= 1 seq[i] = base quicksort(seq, low, i-1) quicksort(seq, i+1, high) quicksort(res, 0, len(res)-1) return res[k-1] # Inorder traversal. class Solution1: def kthSmallest(self, root: TreeNode, k: int) -> int: def inorder(root, res): if root.left != None: inorder(root.left, res) res.append(root.val) if root.right != None: inorder(root.right, res) res = [] inorder(root, res) return res[k-1]
1lch2/PythonExercise
leetcode/binary_tree/230.py
230.py
py
2,160
python
en
code
1
github-code
6
30704086585
from collections import deque with open('day6.txt') as day6: lines = day6.readlines() target_size = 14 current = 0 buffer = deque([''] * target_size) for line in lines: for char in line: current = current + 1 buffer.popleft() buffer.append(char) if current > target_size and len(set(buffer)) == target_size: print(current) break
shanetreacy/aoc2022
day6aoc.py
day6aoc.py
py
365
python
en
code
0
github-code
6
35303233339
from pages.investment_proposal.predefined_plan.predefined_plan import PredefinedPlanPage from pages.investment_proposal.customized_plan.customized_plan import CustomizedPlanPage from pages.investment_proposal.investment_proposal import InvestmentProposalPage from pages.investment_proposal.investment_proposal_config import PREDEFINED_PLAN import time # Define the test case def test_investment_proposal_page(driver): predefined_plan = PREDEFINED_PLAN predefined_plan_page = PredefinedPlanPage(driver) if predefined_plan: time.sleep(1) predefined_plan_page.click_investment_plan() predefined_plan_page.click_continue_button() time.sleep(1) else: predefined_plan_page.click_customized_plan() customized_plan_page = CustomizedPlanPage(driver) customized_plan_page.fill_customized_plan() investment_proposal_page = InvestmentProposalPage(driver) investment_proposal_page.click_continue_button()
qateam-neo/fe-connect-automation
tests/investment_proposal_page_tests.py
investment_proposal_page_tests.py
py
989
python
en
code
0
github-code
6
15257337134
# -*- coding: utf-8 -*- """ Created on Sat Nov 10 17:30:55 2018 @author: Wioletta """ import cv2 from localbinarypatterns import LocalBinaryPatterns img = cv2.imread('yaleB01_P00A+000E+00.pgm') cv2.imshow('Image',img) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) desc = LocalBinaryPatterns(24, 8) hist = desc.describe(gray) cv2.imshow('Histogram', hist)
wiolettakolasa/IO
test.py
test.py
py
360
python
en
code
0
github-code
6
5762269283
import os scriptPath = os.path.dirname(os.path.abspath(__file__)) projRootPath = os.path.abspath( os.path.join(scriptPath , os.path.join('..', '..'))) import numpy as np # matplotlib for displaying the output import matplotlib.pyplot as plt import seaborn as sns sns.set() from scipy import signal from scipy.io import wavfile # and IPython.display for audio output import IPython.display # Librosa for audio import librosa # And the display module for visualization import librosa.display #### Path to data # Get data files two_up = os.path.abspath(os.path.join('.' ,"../..")) print("Project root path is: ", two_up) dataDirName = "data" rawDataDirName = "converted_wav" className = "violin" # className = "guitar" data_path = os.path.join(projRootPath, dataDirName, rawDataDirName, className) print(data_path) root_paths = [] # Get all files from data_path # r=root, d=directories, f = files (_, d, allFiles) = next(os.walk(data_path)) wavFiles = [f for f in allFiles if f.endswith(".wav")] file = wavFiles[1] sample_rate, samples = wavfile.read(os.path.join(data_path, file)) frequencies, times, spectrogram = signal.spectrogram(samples, sample_rate) # all spectrogram plt.pcolormesh(times, frequencies, spectrogram) plt.imshow(spectrogram) plt.ylabel('Frequency') plt.gca().invert_yaxis() plt.xlabel('Time') plt.show()
mariusdgm/AudioMining
src/visualization/spectrogram.py
spectrogram.py
py
1,360
python
en
code
0
github-code
6
33489081133
def isACoveredByB(a, b): return a[0] >= b[0] and a[1] <= b[1] class Solution: def removeCoveredIntervals(self, intervals: List[List[int]]) -> int: cntIntervals = len(intervals) cntToRemove = 0 for i in range(cntIntervals): isCovered = 0 for j in range(cntIntervals): if i == j: continue if isACoveredByB(intervals[i], intervals[j]): isCovered = 1 break cntToRemove += isCovered return cntIntervals - cntToRemove
sxu11/Algorithm_Design
Daily/20210316_1288_RemoveCoveredIntervals.py
20210316_1288_RemoveCoveredIntervals.py
py
582
python
en
code
0
github-code
6
41688432470
from tkinter import * from threading import Thread from unpacker import * from lookupData import * from telemetryModule import * import math root = Tk() root.title("F1 2021 Telemetry App") root.geometry("{}x{}".format(1200, 800)) root.configure(background="#212026") telemetry_modules = [] telemetry_data = [None] * 12 def update(): for telemetry_module in telemetry_modules: telemetry_module.frame.after(1, telemetry_module.updateSize) root.geometry("{}x{}".format(round_to_multiple(root.winfo_width(), 12), round_to_multiple(root.winfo_height(), 8))) root.after(10, update) def retrieve_packet_task(): while True: packet = retrieve_packet() telemetry_data[packet.packetHeader.packetID] = packet def round_to_multiple(x, base): return base * round(x / base) def create_telemetry_module(name, column, row, x_span, y_span, colour): new_module = TelemetryModule(root, name, column, row, x_span, y_span, colour) telemetry_modules.append(new_module) create_telemetry_module("Timing Tower", 0, 0, 3, 6, "gray") create_telemetry_module("Pace Tower", 3, 0, 2, 6, "gray") create_telemetry_module("Pace Graph", 5, 0, 7, 3, "gray") create_telemetry_module("Predicted Finish Graph", 5, 3, 7, 3, "gray") create_telemetry_module("Pit Monitor", 0, 6, 2, 2, "gray") create_telemetry_module("Fuel Monitor", 2, 6, 2, 2, "gray") create_telemetry_module("Weather Forecast", 4, 6, 8, 1, "gray") create_telemetry_module("Pit Strategy", 4, 7, 8, 1, "gray") thread = Thread(target = retrieve_packet_task) thread.start() root.after(1, update) root.mainloop()
smuldoon1/F1-2021-Telemetry-App
telemetryApp.py
telemetryApp.py
py
1,601
python
en
code
1
github-code
6
12417770443
from redirect import config, cryptoDecrypt, datetime, GenericException,jwt, logger, messages, timezone def getClientServerTimeDiff(auth): try: token = auth.split(' ')[-1] decrypted = cryptoDecrypt(token) client_timestamp = float(decrypted)/1000 dt = datetime.datetime.now(timezone.utc) utc_time = dt.replace(tzinfo=timezone.utc) server_timestamp = utc_time.timestamp() diff = server_timestamp - client_timestamp return diff except: raiseGenericException('errToken') def validateTokenAndGetPayload(auth): try: token = auth.split(' ')[-1] # get last word secret = config.get('authentication').get('jwt').get('secret') algorithm = config.get('authentication').get('jwt').get('algorithm') payload = jwt.decode(token, secret, algorithm) print(payload) return payload except jwt.ExpiredSignatureError as error1: logger.error(error1) raiseGenericException('errTokenExpired') except (Exception) as error: logger.error(error) raiseGenericException('errInvalidToken') def raiseGenericException(errName): raise GenericException( code=messages[errName][0], name=errName, message=messages[errName][1]) def raiseGenericExceptionFn(errName, mess): raise GenericException( code= messages[errName](mess)[0], name = errName, message= messages[errName](mess)[1] )
capitalch/bika
dev/KaterServer/data_handlers/graphql_sub_worker.py
graphql_sub_worker.py
py
1,467
python
en
code
0
github-code
6
36578088832
# MIT 6.001 pset 1c total_cost = 1000000.0 portion_down_payment = 0.25 total_down_payment = total_cost * portion_down_payment current_savings = 0.0 r = 0.04 base_annual_sallary = 0.0 semi_annual_raise = 0.07 best_saving_rate = 0.0 money_range = 100.0 months = 36 init_upper = 10000 upper_bound = init_upper lower_bound = 0 portion_saved = (upper_bound + lower_bound) / 2 steps = 0 base_annual_sallary = float(input("Whats your annual sallary? ")) while abs(current_savings - total_down_payment) > money_range: steps += 1 current_savings = 0.0 annual_sallary = base_annual_sallary monthly_salary = annual_sallary / 12 monthly_deposit = monthly_salary * (portion_saved / 10000) for month in range(1, months + 1): current_savings += current_savings * (r/12) current_savings += monthly_deposit if month % 6 == 0: annual_sallary += annual_sallary * semi_annual_raise monthly_salary = annual_sallary / 12 monthly_deposit = monthly_salary * (portion_saved / 10000) prev_portion_saved = portion_saved if current_savings > total_down_payment: upper_bound = portion_saved else: lower_bound = portion_saved portion_saved = int(round((upper_bound + lower_bound) / 2)) if prev_portion_saved == portion_saved: break if prev_portion_saved == portion_saved and portion_saved == init_upper: print("it is not possible to pay the house in three years") else: print("Best savings rate is", portion_saved / 10000) print("Steps in bisection search:", steps)
1kaLn/MIT-60001
pset1/ps1c.py
ps1c.py
py
1,599
python
en
code
0
github-code
6
4714847905
import requests import ast import sys import getopt class XkcdClient(): def api_call(self, url): self.urls = url r = requests.get(url = self.urls) byte_str = r.content dict_str = byte_str.decode("UTF-8") my_data = ast.literal_eval(dict_str) return my_data def get_image(self,img_url): self.img_name = img_url.split('/')[-1] img_data = requests.get(img_url).content with open(self.img_name, 'wb') as handler: handler.write(img_data) # client = XkcdClient() # response = client.api_call('https://xkcd.com/info.0.json') # print(response) if __name__ == '__main__': cmd_line_args = sys.argv[1:] unix_args = 'hn:os' gnu_args = ['help','comicnum=','print','save-image'] oplist, args = getopt.getopt(cmd_line_args,unix_args,gnu_args) print(args) #Extra arguments that are not part of the uni_args or gnu_args print(oplist) #oplist is a list of tuples comic_num = '' client = XkcdClient() url_latest = 'https://xkcd.com/info.0.json' for opt, arg in oplist: print(opt) print(arg) if opt == '-h' or opt == '--help': print('help message') print('Use -n or --comicnum to specify the comic number you want use 0 as argument for latest comic') print('Use -o or --print to get info in text/json format') print('Use -s or --save-image to download image in this directory') elif opt == '-n' or opt == '--comicnum': comic_num = arg if comic_num is '0': #default get the latest comic print('Get the comic number ' + str(arg)) response = client.api_call(url_latest) print(response) else: url_specific = 'http://xkcd.com/'+arg+'/info.0.json' response = client.api_call(url_specific) elif opt == '-o' or opt == '--print': if comic_num: if comic_num is '0': print('print output in format json/text') print(response) else: print('The output in json/text is') print(response) else: print('Set the -n parameter first') elif opt == '-s' or opt == '--save-image': if comic_num: img_url = response['img'] client.get_image(img_url) else: print('Set the -n parameter first')
nishantasarma/XkcdClientApp
client.py
client.py
py
2,527
python
en
code
0
github-code
6
31533763236
groups_number = int(input()) total_people = 0 musala_people = 0 mont_blanc_people = 0 kilimanjaro_people = 0 k2_people = 0 everest_people = 0 percent_musala = 0 percent_mont_blanc = 0 percent_kilimanjaro = 0 percent_k2 = 0 percent_everest = 0 for group in range(groups_number): current_people = int(input()) if current_people <= 5: musala_people += current_people elif current_people <= 12: mont_blanc_people += current_people elif current_people <= 25: kilimanjaro_people += current_people elif current_people <= 40: k2_people += current_people elif current_people > 40: everest_people += current_people total_people = musala_people + mont_blanc_people + kilimanjaro_people\ + k2_people + everest_people percent_musala = musala_people / total_people * 100 percent_mont_blanc = mont_blanc_people / total_people * 100 percent_kilimanjaro = kilimanjaro_people / total_people * 100 percent_k2 = k2_people / total_people * 100 percent_everest = everest_people / total_people * 100 print(f"{percent_musala:.2f}%") print(f"{percent_mont_blanc:.2f}%") print(f"{percent_kilimanjaro:.2f}%") print(f"{percent_k2:.2f}%") print(f"{percent_everest:.2f}%")
iliyan-pigeon/Soft-uni-Courses
programming_basics_python/exams/exam_march_2020/trekking_mania.py
trekking_mania.py
py
1,210
python
en
code
0
github-code
6
30827675825
import os import sys import json import logging from time import time from PyQt5.Qt import PYQT_VERSION_STR from PyQt5.QtCore import ( QT_VERSION_STR, QStandardPaths, QSysInfo, QLocale, QLibraryInfo, QTranslator ) from novelwriter.error import logException, formatException from novelwriter.common import splitVersionNumber, formatTimeStamp, NWConfigParser from novelwriter.constants import nwFiles, nwUnicode logger = logging.getLogger(__name__) class Config: LANG_NW = 1 LANG_PROJ = 2 def __init__(self): # Set Application Variables self.appName = "novelWriter" self.appHandle = self.appName.lower() # Config Error Handling self.hasError = False # True if the config class encountered an error self.errData = [] # List of error messages # Set Paths self.cmdOpen = None # Path from command line for project to be opened on launch self.confPath = None # Folder where the config is saved self.confFile = None # The config file name self.dataPath = None # Folder where app data is stored self.lastPath = None # The last user-selected folder (browse dialogs) self.appPath = None # The full path to the novelwriter package folder self.appRoot = None # The full path to the novelwriter root folder self.appIcon = None # The full path to the novelwriter icon file self.assetPath = None # The full path to the novelwriter/assets folder self.pdfDocs = None # The location of the PDF manual, if it exists # Runtime Settings and Variables self.confChanged = False # True whenever the config has chenged, false after save # General self.guiTheme = "" # GUI theme self.guiSyntax = "" # Syntax theme self.guiIcons = "" # Icon theme self.guiFont = "" # Defaults to system default font self.guiFontSize = 11 # Is overridden if system default is loaded self.guiScale = 1.0 # Set automatically by Theme class self.lastNotes = "0x0" # The latest release notes that have been shown self.setDefaultGuiTheme() self.setDefaultSyntaxTheme() self.setDefaultIconTheme() # Localisation self.qLocal = QLocale.system() self.guiLang = self.qLocal.name() self.qtLangPath = QLibraryInfo.location(QLibraryInfo.TranslationsPath) self.nwLangPath = None self.qtTrans = {} # Sizes self.winGeometry = [1200, 650] self.prefGeometry = [700, 615] self.treeColWidth = [200, 50, 30] self.novelColWidth = [200, 50] self.projColWidth = [200, 60, 140] self.mainPanePos = [300, 800] self.docPanePos = [400, 400] self.viewPanePos = [500, 150] self.outlnPanePos = [500, 150] self.isFullScreen = False # Features self.hideVScroll = False # Hide vertical scroll bars on main widgets self.hideHScroll = False # Hide horizontal scroll bars on main widgets self.emphLabels = True # Add emphasis to H1 and H2 item labels # Project self.autoSaveProj = 60 # Interval for auto-saving project in seconds self.autoSaveDoc = 30 # Interval for auto-saving document in seconds # Text Editor self.textFont = None # Editor font self.textSize = 12 # Editor font size self.textWidth = 600 # Editor text width self.textMargin = 40 # Editor/viewer text margin self.tabWidth = 40 # Editor tabulator width self.focusWidth = 800 # Focus Mode text width self.hideFocusFooter = False # Hide document footer in Focus Mode self.showFullPath = True # Show full document path in editor header self.autoSelect = True # Auto-select word when applying format with no selection self.doJustify = False # Justify text self.showTabsNSpaces = False # Show tabs and spaces in edior self.showLineEndings = False # Show line endings in editor self.showMultiSpaces = True # Highlight multiple spaces in the text self.doReplace = True # Enable auto-replace as you type self.doReplaceSQuote = True # Smart single quotes self.doReplaceDQuote = True # Smart double quotes self.doReplaceDash = True # Replace multiple hyphens with dashes self.doReplaceDots = True # Replace three dots with ellipsis self.scrollPastEnd = 25 # Number of lines to scroll past end of document self.autoScroll = False # Typewriter-like scrolling self.autoScrollPos = 30 # Start point for typewriter-like scrolling self.wordCountTimer = 5.0 # Interval for word count update in seconds self.bigDocLimit = 800 # Size threshold for heavy editor features in kilobytes self.incNotesWCount = True # The status bar word count includes notes self.highlightQuotes = True # Highlight text in quotes self.allowOpenSQuote = False # Allow open-ended single quotes self.allowOpenDQuote = True # Allow open-ended double quotes self.highlightEmph = True # Add colour to text emphasis self.stopWhenIdle = True # Stop the status bar clock when the user is idle self.userIdleTime = 300 # Time of inactivity to consider user idle # User-Selected Symbols self.fmtApostrophe = nwUnicode.U_RSQUO self.fmtSingleQuotes = [nwUnicode.U_LSQUO, nwUnicode.U_RSQUO] self.fmtDoubleQuotes = [nwUnicode.U_LDQUO, nwUnicode.U_RDQUO] self.fmtPadBefore = "" self.fmtPadAfter = "" self.fmtPadThin = False # Spell Checking self.spellLanguage = None # Search Bar Switches self.searchCase = False self.searchWord = False self.searchRegEx = False self.searchLoop = False self.searchNextFile = False self.searchMatchCap = False # Backup self.backupPath = "" self.backupOnClose = False self.askBeforeBackup = True # State self.showRefPanel = True # The reference panel for the viewer is visible self.viewComments = True # Comments are shown in the viewer self.viewSynopsis = True # Synopsis is shown in the viewer # Check Qt5 Versions verQt = splitVersionNumber(QT_VERSION_STR) self.verQtString = QT_VERSION_STR self.verQtMajor = verQt[0] self.verQtMinor = verQt[1] self.verQtPatch = verQt[2] self.verQtValue = verQt[3] verQt = splitVersionNumber(PYQT_VERSION_STR) self.verPyQtString = PYQT_VERSION_STR self.verPyQtMajor = verQt[0] self.verPyQtMinor = verQt[1] self.verPyQtPatch = verQt[2] self.verPyQtValue = verQt[3] # Check Python Version self.verPyString = sys.version.split()[0] self.verPyMajor = sys.version_info[0] self.verPyMinor = sys.version_info[1] self.verPyPatch = sys.version_info[2] self.verPyHexVal = sys.hexversion # Check OS Type self.osType = sys.platform self.osLinux = False self.osWindows = False self.osDarwin = False self.osUnknown = False if self.osType.startswith("linux"): self.osLinux = True elif self.osType.startswith("darwin"): self.osDarwin = True elif self.osType.startswith("win32"): self.osWindows = True elif self.osType.startswith("cygwin"): self.osWindows = True else: self.osUnknown = True # Other System Info self.hostName = "Unknown" self.kernelVer = "Unknown" # Packages self.hasEnchant = False # The pyenchant package # Recent Cache self.recentProj = {} return ## # Methods ## def pxInt(self, theSize): """Used to scale fixed gui sizes by the screen scale factor. This function returns an int, which is always rounded down. """ return int(theSize*self.guiScale) def rpxInt(self, theSize): """Used to un-scale fixed gui sizes by the screen scale factor. This function returns an int, which is always rounded down. """ return int(theSize/self.guiScale) ## # Config Actions ## def initConfig(self, confPath=None, dataPath=None): """Initialise the config class. The manual setting of confPath and dataPath is mainly intended for the test suite. """ logger.debug("Initialising Config ...") if confPath is None: confRoot = QStandardPaths.writableLocation(QStandardPaths.ConfigLocation) self.confPath = os.path.join(os.path.abspath(confRoot), self.appHandle) else: logger.info("Setting config from alternative path: %s", confPath) self.confPath = confPath if dataPath is None: if self.verQtValue >= 50400: dataRoot = QStandardPaths.writableLocation(QStandardPaths.AppDataLocation) else: dataRoot = QStandardPaths.writableLocation(QStandardPaths.DataLocation) self.dataPath = os.path.join(os.path.abspath(dataRoot), self.appHandle) else: logger.info("Setting data path from alternative path: %s", dataPath) self.dataPath = dataPath logger.verbose("Config path: %s", self.confPath) logger.verbose("Data path: %s", self.dataPath) # Check Data Path Subdirs dataDirs = ["syntax", "themes"] for dataDir in dataDirs: dirPath = os.path.join(self.dataPath, dataDir) if not os.path.isdir(dirPath): try: os.mkdir(dirPath) logger.info("Created folder: %s", dirPath) except Exception: logger.error("Could not create folder: %s", dirPath) logException() self.confFile = self.appHandle+".conf" self.lastPath = os.path.expanduser("~") self.appPath = getattr(sys, "_MEIPASS", os.path.abspath(os.path.dirname(__file__))) self.appRoot = os.path.abspath(os.path.join(self.appPath, os.path.pardir)) if os.path.isfile(self.appRoot): # novelWriter is packaged as a single file, so the app and # root paths are the same, and equal to the folder that # contains the single executable. self.appRoot = os.path.dirname(self.appRoot) self.appPath = self.appRoot # Assets self.assetPath = os.path.join(self.appPath, "assets") self.appIcon = os.path.join(self.assetPath, "icons", "novelwriter.svg") # Internationalisation self.nwLangPath = os.path.join(self.assetPath, "i18n") logger.debug("Assets: %s", self.assetPath) logger.verbose("App path: %s", self.appPath) logger.verbose("Last path: %s", self.lastPath) # If the config folder does not exist, create it. # This assumes that the os config folder itself exists. if not os.path.isdir(self.confPath): try: os.mkdir(self.confPath) except Exception as exc: logger.error("Could not create folder: %s", self.confPath) logException() self.hasError = True self.errData.append("Could not create folder: %s" % self.confPath) self.errData.append(formatException(exc)) self.confPath = None # Check if config file exists if self.confPath is not None: if os.path.isfile(os.path.join(self.confPath, self.confFile)): # If it exists, load it self.loadConfig() else: # If it does not exist, save a copy of the default values self.saveConfig() # If the data folder does not exist, create it. # This assumes that the os data folder itself exists. if self.dataPath is not None: if not os.path.isdir(self.dataPath): try: os.mkdir(self.dataPath) except Exception as exc: logger.error("Could not create folder: %s", self.dataPath) logException() self.hasError = True self.errData.append("Could not create folder: %s" % self.dataPath) self.errData.append(formatException(exc)) self.dataPath = None # Host and Kernel if self.verQtValue >= 50600: self.hostName = QSysInfo.machineHostName() self.kernelVer = QSysInfo.kernelVersion() # Load recent projects cache self.loadRecentCache() # Check the availability of optional packages self._checkOptionalPackages() if self.spellLanguage is None: self.spellLanguage = "en" # Look for a PDF version of the manual pdfDocs = os.path.join(self.assetPath, "manual.pdf") if os.path.isfile(pdfDocs): logger.debug("Found manual: %s", pdfDocs) self.pdfDocs = pdfDocs logger.debug("Config initialisation complete") return True def initLocalisation(self, nwApp): """Initialise the localisation of the GUI. """ self.qLocal = QLocale(self.guiLang) QLocale.setDefault(self.qLocal) self.qtTrans = {} langList = [ (self.qtLangPath, "qtbase"), # Qt 5.x (self.nwLangPath, "qtbase"), # Alternative Qt 5.x (self.nwLangPath, "nw"), # novelWriter ] for lngPath, lngBase in langList: for lngCode in self.qLocal.uiLanguages(): qTrans = QTranslator() lngFile = "%s_%s" % (lngBase, lngCode.replace("-", "_")) if lngFile not in self.qtTrans: if qTrans.load(lngFile, lngPath): logger.debug("Loaded: %s", os.path.join(lngPath, lngFile)) nwApp.installTranslator(qTrans) self.qtTrans[lngFile] = qTrans return def listLanguages(self, lngSet): """List localisation files in the i18n folder. The default GUI language 'en_GB' is British English. """ if lngSet == self.LANG_NW: fPre = "nw_" fExt = ".qm" langList = {"en_GB": QLocale("en_GB").nativeLanguageName().title()} elif lngSet == self.LANG_PROJ: fPre = "project_" fExt = ".json" langList = {"en_GB": QLocale("en_GB").nativeLanguageName().title()} else: return [] for qmFile in os.listdir(self.nwLangPath): if not os.path.isfile(os.path.join(self.nwLangPath, qmFile)): continue if not qmFile.startswith(fPre) or not qmFile.endswith(fExt): continue qmLang = qmFile[len(fPre):-len(fExt)] qmName = QLocale(qmLang).nativeLanguageName().title() if qmLang and qmName and qmLang != "en_GB": langList[qmLang] = qmName return sorted(langList.items(), key=lambda x: x[0]) def loadConfig(self): """Load preferences from file and replace default settings. """ logger.debug("Loading config file") if self.confPath is None: return False theConf = NWConfigParser() cnfPath = os.path.join(self.confPath, self.confFile) try: with open(cnfPath, mode="r", encoding="utf-8") as inFile: theConf.read_file(inFile) except Exception as exc: logger.error("Could not load config file") logException() self.hasError = True self.errData.append("Could not load config file") self.errData.append(formatException(exc)) return False # Main cnfSec = "Main" self.guiTheme = theConf.rdStr(cnfSec, "theme", self.guiTheme) self.guiSyntax = theConf.rdStr(cnfSec, "syntax", self.guiSyntax) self.guiIcons = theConf.rdStr(cnfSec, "icons", self.guiIcons) self.guiFont = theConf.rdStr(cnfSec, "guifont", self.guiFont) self.guiFontSize = theConf.rdInt(cnfSec, "guifontsize", self.guiFontSize) self.lastNotes = theConf.rdStr(cnfSec, "lastnotes", self.lastNotes) self.guiLang = theConf.rdStr(cnfSec, "guilang", self.guiLang) self.hideVScroll = theConf.rdBool(cnfSec, "hidevscroll", self.hideVScroll) self.hideHScroll = theConf.rdBool(cnfSec, "hidehscroll", self.hideHScroll) # Sizes cnfSec = "Sizes" self.winGeometry = theConf.rdIntList(cnfSec, "geometry", self.winGeometry) self.prefGeometry = theConf.rdIntList(cnfSec, "preferences", self.prefGeometry) self.treeColWidth = theConf.rdIntList(cnfSec, "treecols", self.treeColWidth) self.novelColWidth = theConf.rdIntList(cnfSec, "novelcols", self.novelColWidth) self.projColWidth = theConf.rdIntList(cnfSec, "projcols", self.projColWidth) self.mainPanePos = theConf.rdIntList(cnfSec, "mainpane", self.mainPanePos) self.docPanePos = theConf.rdIntList(cnfSec, "docpane", self.docPanePos) self.viewPanePos = theConf.rdIntList(cnfSec, "viewpane", self.viewPanePos) self.outlnPanePos = theConf.rdIntList(cnfSec, "outlinepane", self.outlnPanePos) self.isFullScreen = theConf.rdBool(cnfSec, "fullscreen", self.isFullScreen) # Project cnfSec = "Project" self.autoSaveProj = theConf.rdInt(cnfSec, "autosaveproject", self.autoSaveProj) self.autoSaveDoc = theConf.rdInt(cnfSec, "autosavedoc", self.autoSaveDoc) self.emphLabels = theConf.rdBool(cnfSec, "emphlabels", self.emphLabels) # Editor cnfSec = "Editor" self.textFont = theConf.rdStr(cnfSec, "textfont", self.textFont) self.textSize = theConf.rdInt(cnfSec, "textsize", self.textSize) self.textWidth = theConf.rdInt(cnfSec, "width", self.textWidth) self.textMargin = theConf.rdInt(cnfSec, "margin", self.textMargin) self.tabWidth = theConf.rdInt(cnfSec, "tabwidth", self.tabWidth) self.focusWidth = theConf.rdInt(cnfSec, "focuswidth", self.focusWidth) self.hideFocusFooter = theConf.rdBool(cnfSec, "hidefocusfooter", self.hideFocusFooter) self.doJustify = theConf.rdBool(cnfSec, "justify", self.doJustify) self.autoSelect = theConf.rdBool(cnfSec, "autoselect", self.autoSelect) self.doReplace = theConf.rdBool(cnfSec, "autoreplace", self.doReplace) self.doReplaceSQuote = theConf.rdBool(cnfSec, "repsquotes", self.doReplaceSQuote) self.doReplaceDQuote = theConf.rdBool(cnfSec, "repdquotes", self.doReplaceDQuote) self.doReplaceDash = theConf.rdBool(cnfSec, "repdash", self.doReplaceDash) self.doReplaceDots = theConf.rdBool(cnfSec, "repdots", self.doReplaceDots) self.scrollPastEnd = theConf.rdInt(cnfSec, "scrollpastend", self.scrollPastEnd) self.autoScroll = theConf.rdBool(cnfSec, "autoscroll", self.autoScroll) self.autoScrollPos = theConf.rdInt(cnfSec, "autoscrollpos", self.autoScrollPos) self.fmtSingleQuotes = theConf.rdStrList(cnfSec, "fmtsinglequote", self.fmtSingleQuotes) self.fmtDoubleQuotes = theConf.rdStrList(cnfSec, "fmtdoublequote", self.fmtDoubleQuotes) self.fmtPadBefore = theConf.rdStr(cnfSec, "fmtpadbefore", self.fmtPadBefore) self.fmtPadAfter = theConf.rdStr(cnfSec, "fmtpadafter", self.fmtPadAfter) self.fmtPadThin = theConf.rdBool(cnfSec, "fmtpadthin", self.fmtPadThin) self.spellLanguage = theConf.rdStr(cnfSec, "spellcheck", self.spellLanguage) self.showTabsNSpaces = theConf.rdBool(cnfSec, "showtabsnspaces", self.showTabsNSpaces) self.showLineEndings = theConf.rdBool(cnfSec, "showlineendings", self.showLineEndings) self.showMultiSpaces = theConf.rdBool(cnfSec, "showmultispaces", self.showMultiSpaces) self.wordCountTimer = theConf.rdFlt(cnfSec, "wordcounttimer", self.wordCountTimer) self.bigDocLimit = theConf.rdInt(cnfSec, "bigdoclimit", self.bigDocLimit) self.incNotesWCount = theConf.rdBool(cnfSec, "incnoteswcount", self.incNotesWCount) self.showFullPath = theConf.rdBool(cnfSec, "showfullpath", self.showFullPath) self.highlightQuotes = theConf.rdBool(cnfSec, "highlightquotes", self.highlightQuotes) self.allowOpenSQuote = theConf.rdBool(cnfSec, "allowopensquote", self.allowOpenSQuote) self.allowOpenDQuote = theConf.rdBool(cnfSec, "allowopendquote", self.allowOpenDQuote) self.highlightEmph = theConf.rdBool(cnfSec, "highlightemph", self.highlightEmph) self.stopWhenIdle = theConf.rdBool(cnfSec, "stopwhenidle", self.stopWhenIdle) self.userIdleTime = theConf.rdInt(cnfSec, "useridletime", self.userIdleTime) # Backup cnfSec = "Backup" self.backupPath = theConf.rdStr(cnfSec, "backuppath", self.backupPath) self.backupOnClose = theConf.rdBool(cnfSec, "backuponclose", self.backupOnClose) self.askBeforeBackup = theConf.rdBool(cnfSec, "askbeforebackup", self.askBeforeBackup) # State cnfSec = "State" self.showRefPanel = theConf.rdBool(cnfSec, "showrefpanel", self.showRefPanel) self.viewComments = theConf.rdBool(cnfSec, "viewcomments", self.viewComments) self.viewSynopsis = theConf.rdBool(cnfSec, "viewsynopsis", self.viewSynopsis) self.searchCase = theConf.rdBool(cnfSec, "searchcase", self.searchCase) self.searchWord = theConf.rdBool(cnfSec, "searchword", self.searchWord) self.searchRegEx = theConf.rdBool(cnfSec, "searchregex", self.searchRegEx) self.searchLoop = theConf.rdBool(cnfSec, "searchloop", self.searchLoop) self.searchNextFile = theConf.rdBool(cnfSec, "searchnextfile", self.searchNextFile) self.searchMatchCap = theConf.rdBool(cnfSec, "searchmatchcap", self.searchMatchCap) # Path cnfSec = "Path" self.lastPath = theConf.rdStr(cnfSec, "lastpath", self.lastPath) # Check Certain Values for None self.spellLanguage = self._checkNone(self.spellLanguage) # If we're using straight quotes, disable auto-replace if self.fmtSingleQuotes == ["'", "'"] and self.doReplaceSQuote: logger.info("Using straight single quotes, so disabling auto-replace") self.doReplaceSQuote = False if self.fmtDoubleQuotes == ['"', '"'] and self.doReplaceDQuote: logger.info("Using straight double quotes, so disabling auto-replace") self.doReplaceDQuote = False # Check deprecated settings if self.guiIcons in ("typicons_colour_dark", "typicons_grey_dark"): self.guiIcons = "typicons_dark" elif self.guiIcons in ("typicons_colour_light", "typicons_grey_light"): self.guiIcons = "typicons_light" return True def saveConfig(self): """Save the current preferences to file. """ logger.debug("Saving config file") if self.confPath is None: return False theConf = NWConfigParser() theConf["Main"] = { "timestamp": formatTimeStamp(time()), "theme": str(self.guiTheme), "syntax": str(self.guiSyntax), "icons": str(self.guiIcons), "guifont": str(self.guiFont), "guifontsize": str(self.guiFontSize), "lastnotes": str(self.lastNotes), "guilang": str(self.guiLang), "hidevscroll": str(self.hideVScroll), "hidehscroll": str(self.hideHScroll), } theConf["Sizes"] = { "geometry": self._packList(self.winGeometry), "preferences": self._packList(self.prefGeometry), "treecols": self._packList(self.treeColWidth), "novelcols": self._packList(self.novelColWidth), "projcols": self._packList(self.projColWidth), "mainpane": self._packList(self.mainPanePos), "docpane": self._packList(self.docPanePos), "viewpane": self._packList(self.viewPanePos), "outlinepane": self._packList(self.outlnPanePos), "fullscreen": str(self.isFullScreen), } theConf["Project"] = { "autosaveproject": str(self.autoSaveProj), "autosavedoc": str(self.autoSaveDoc), "emphlabels": str(self.emphLabels), } theConf["Editor"] = { "textfont": str(self.textFont), "textsize": str(self.textSize), "width": str(self.textWidth), "margin": str(self.textMargin), "tabwidth": str(self.tabWidth), "focuswidth": str(self.focusWidth), "hidefocusfooter": str(self.hideFocusFooter), "justify": str(self.doJustify), "autoselect": str(self.autoSelect), "autoreplace": str(self.doReplace), "repsquotes": str(self.doReplaceSQuote), "repdquotes": str(self.doReplaceDQuote), "repdash": str(self.doReplaceDash), "repdots": str(self.doReplaceDots), "scrollpastend": str(self.scrollPastEnd), "autoscroll": str(self.autoScroll), "autoscrollpos": str(self.autoScrollPos), "fmtsinglequote": self._packList(self.fmtSingleQuotes), "fmtdoublequote": self._packList(self.fmtDoubleQuotes), "fmtpadbefore": str(self.fmtPadBefore), "fmtpadafter": str(self.fmtPadAfter), "fmtpadthin": str(self.fmtPadThin), "spellcheck": str(self.spellLanguage), "showtabsnspaces": str(self.showTabsNSpaces), "showlineendings": str(self.showLineEndings), "showmultispaces": str(self.showMultiSpaces), "wordcounttimer": str(self.wordCountTimer), "bigdoclimit": str(self.bigDocLimit), "incnoteswcount": str(self.incNotesWCount), "showfullpath": str(self.showFullPath), "highlightquotes": str(self.highlightQuotes), "allowopensquote": str(self.allowOpenSQuote), "allowopendquote": str(self.allowOpenDQuote), "highlightemph": str(self.highlightEmph), "stopwhenidle": str(self.stopWhenIdle), "useridletime": str(self.userIdleTime), } theConf["Backup"] = { "backuppath": str(self.backupPath), "backuponclose": str(self.backupOnClose), "askbeforebackup": str(self.askBeforeBackup), } theConf["State"] = { "showrefpanel": str(self.showRefPanel), "viewcomments": str(self.viewComments), "viewsynopsis": str(self.viewSynopsis), "searchcase": str(self.searchCase), "searchword": str(self.searchWord), "searchregex": str(self.searchRegEx), "searchloop": str(self.searchLoop), "searchnextfile": str(self.searchNextFile), "searchmatchcap": str(self.searchMatchCap), } theConf["Path"] = { "lastpath": str(self.lastPath), } # Write config file cnfPath = os.path.join(self.confPath, self.confFile) try: with open(cnfPath, mode="w", encoding="utf-8") as outFile: theConf.write(outFile) self.confChanged = False except Exception as exc: logger.error("Could not save config file") logException() self.hasError = True self.errData.append("Could not save config file") self.errData.append(formatException(exc)) return False return True def loadRecentCache(self): """Load the cache file for recent projects. """ if self.dataPath is None: return False self.recentProj = {} cacheFile = os.path.join(self.dataPath, nwFiles.RECENT_FILE) if not os.path.isfile(cacheFile): return True try: with open(cacheFile, mode="r", encoding="utf-8") as inFile: theData = json.load(inFile) for projPath, theEntry in theData.items(): self.recentProj[projPath] = { "title": theEntry.get("title", ""), "time": theEntry.get("time", 0), "words": theEntry.get("words", 0), } except Exception as exc: self.hasError = True self.errData.append("Could not load recent project cache") self.errData.append(formatException(exc)) return False return True def saveRecentCache(self): """Save the cache dictionary of recent projects. """ if self.dataPath is None: return False cacheFile = os.path.join(self.dataPath, nwFiles.RECENT_FILE) cacheTemp = os.path.join(self.dataPath, nwFiles.RECENT_FILE+"~") try: with open(cacheTemp, mode="w+", encoding="utf-8") as outFile: json.dump(self.recentProj, outFile, indent=2) except Exception as exc: self.hasError = True self.errData.append("Could not save recent project cache") self.errData.append(formatException(exc)) return False if os.path.isfile(cacheFile): os.unlink(cacheFile) os.rename(cacheTemp, cacheFile) return True def updateRecentCache(self, projPath, projTitle, wordCount, saveTime): """Add or update recent cache information on a given project. """ self.recentProj[os.path.abspath(projPath)] = { "title": projTitle, "time": int(saveTime), "words": int(wordCount), } return True def removeFromRecentCache(self, thePath): """Trying to remove a path from the recent projects cache. """ if thePath in self.recentProj: del self.recentProj[thePath] logger.verbose("Removed recent: %s", thePath) self.saveRecentCache() else: logger.error("Unknown recent: %s", thePath) return False return True ## # Setters ## def setConfPath(self, newPath): """Set the path and filename to the config file. """ if newPath is None: return True if not os.path.isfile(newPath): logger.error("File not found, using default config path instead") return False self.confPath = os.path.dirname(newPath) self.confFile = os.path.basename(newPath) return True def setDataPath(self, newPath): """Set the data path. """ if newPath is None: return True if not os.path.isdir(newPath): logger.error("Path not found, using default data path instead") return False self.dataPath = os.path.abspath(newPath) return True def setLastPath(self, lastPath): """Set the last used path (by the user). """ if lastPath is None or lastPath == "": self.lastPath = "" else: self.lastPath = os.path.dirname(lastPath) return True def setWinSize(self, newWidth, newHeight): """Set the size of the main window, but only if the change is larger than 5 pixels. The OS window manager will sometimes adjust it a bit, and we don't want the main window to shrink or grow each time the app is opened. """ newWidth = int(newWidth/self.guiScale) newHeight = int(newHeight/self.guiScale) if abs(self.winGeometry[0] - newWidth) > 5: self.winGeometry[0] = newWidth self.confChanged = True if abs(self.winGeometry[1] - newHeight) > 5: self.winGeometry[1] = newHeight self.confChanged = True return True def setPreferencesSize(self, newWidth, newHeight): """Sat the size of the Preferences dialog window. """ self.prefGeometry[0] = int(newWidth/self.guiScale) self.prefGeometry[1] = int(newHeight/self.guiScale) self.confChanged = True return True def setTreeColWidths(self, colWidths): """Set the column widths of the main project tree. """ self.treeColWidth = [int(x/self.guiScale) for x in colWidths] self.confChanged = True return True def setNovelColWidths(self, colWidths): """Set the column widths of the novel tree. """ self.novelColWidth = [int(x/self.guiScale) for x in colWidths] self.confChanged = True return True def setProjColWidths(self, colWidths): """Set the column widths of the Load Project dialog. """ self.projColWidth = [int(x/self.guiScale) for x in colWidths] self.confChanged = True return True def setMainPanePos(self, panePos): """Set the position of the main GUI splitter. """ self.mainPanePos = [int(x/self.guiScale) for x in panePos] self.confChanged = True return True def setDocPanePos(self, panePos): """Set the position of the main editor/viewer splitter. """ self.docPanePos = [int(x/self.guiScale) for x in panePos] self.confChanged = True return True def setViewPanePos(self, panePos): """Set the position of the viewer meta data splitter. """ self.viewPanePos = [int(x/self.guiScale) for x in panePos] self.confChanged = True return True def setOutlinePanePos(self, panePos): """Set the position of the outline details splitter. """ self.outlnPanePos = [int(x/self.guiScale) for x in panePos] self.confChanged = True return True def setShowRefPanel(self, checkState): """Set the visibility state of the reference panel. """ self.showRefPanel = checkState self.confChanged = True return self.showRefPanel def setViewComments(self, viewState): """Set the visibility state of comments in the viewer. """ self.viewComments = viewState self.confChanged = True return self.viewComments def setViewSynopsis(self, viewState): """Set the visibility state of synopsis comments in the viewer. """ self.viewSynopsis = viewState self.confChanged = True return self.viewSynopsis ## # Default Setters ## def setDefaultGuiTheme(self): """Reset the GUI theme to default value. """ self.guiTheme = "default" def setDefaultSyntaxTheme(self): """Reset the syntax theme to default value. """ self.guiSyntax = "default_light" def setDefaultIconTheme(self): """Reset the icon theme to default value. """ self.guiIcons = "typicons_light" ## # Getters ## def getWinSize(self): return [int(x*self.guiScale) for x in self.winGeometry] def getPreferencesSize(self): return [int(x*self.guiScale) for x in self.prefGeometry] def getTreeColWidths(self): return [int(x*self.guiScale) for x in self.treeColWidth] def getNovelColWidths(self): return [int(x*self.guiScale) for x in self.novelColWidth] def getProjColWidths(self): return [int(x*self.guiScale) for x in self.projColWidth] def getMainPanePos(self): return [int(x*self.guiScale) for x in self.mainPanePos] def getDocPanePos(self): return [int(x*self.guiScale) for x in self.docPanePos] def getViewPanePos(self): return [int(x*self.guiScale) for x in self.viewPanePos] def getOutlinePanePos(self): return [int(x*self.guiScale) for x in self.outlnPanePos] def getTextWidth(self, focusMode=False): if focusMode: return self.pxInt(max(self.focusWidth, 200)) else: return self.pxInt(max(self.textWidth, 200)) def getTextMargin(self): return self.pxInt(max(self.textMargin, 0)) def getTabWidth(self): return self.pxInt(max(self.tabWidth, 0)) def getErrData(self): """Compile and return error messages from the initialisation of the Config class, and clear the error buffer. """ errMessage = "<br>".join(self.errData) self.hasError = False self.errData = [] return errMessage ## # Internal Functions ## def _packList(self, inData): """Pack a list of items into a comma-separated string for saving to the config file. """ return ", ".join([str(inVal) for inVal in inData]) def _checkNone(self, checkVal): """Return a NoneType if the value corresponds to None, otherwise return the value unchanged. """ if checkVal is None: return None if isinstance(checkVal, str): if checkVal.lower() == "none": return None return checkVal def _checkOptionalPackages(self): """Cheks if we have the optional packages used by some features. """ try: import enchant # noqa: F401 self.hasEnchant = True logger.debug("Checking package 'pyenchant': OK") except Exception: self.hasEnchant = False logger.debug("Checking package 'pyenchant': Missing") return # END Class Config
vaelue/novelWriter
novelwriter/config.py
config.py
py
38,609
python
en
code
null
github-code
6
26355881815
# this is nima nikrouz's midterm project #=============================================library===================================================== from tabulate import tabulate #=============================================library===================================================== #=============================================roots===================================================== realBord=(("a1","b1","c1","d1","e1","f1","g1","h1"), ("a2","b2","c2","d2","e2","f2","g2","h2"), ("a3","b3","c3","d3","e3","f3","g3","h3"), ("a4","b4","c4","d4","e4","f4","g4","h4"), ("a5","b5","c5","d5","e5","f5","g5","h5"), ("a6","b6","c6","d6","e6","f6","g6","h6"), ("a7","b7","c7","d7","e7","f7","g7","h7"), ("a8","b8","c8","d8","e8","f8","g8","h8")) primeryBord=[["a1","b1","c1","d1","e1","f1","g1","h1"], ["a2","b2","c2","d2","e2","f2","g2","h2"], ["a3","b3","c3","d3","e3","f3","g3","h3"], ["a4","b4","c4","d4","e4","f4","g4","h4"], ["a5","b5","c5","d5","e5","f5","g5","h5"], ["a6","b6","c6","d6","e6","f6","g6","h6"], ["a7","b7","c7","d7","e7","f7","g7","h7"], ["a8","b8","c8","d8","e8","f8","g8","h8"]] queen="Q" full="F" #=============================================roots===================================================== #=============================================defs===================================================== def column(n): #this def is for having a list of the column we want. column=[] for item in range(8): column.append(primeryBord[item][n]) return column def orib1(mylist): #this def is for orib list from top left to bottom right. i=int(mylist[0]) j=int(mylist[1]) orib1=[] while 0<=j<len(realBord) and 0<=i<len(realBord): orib1.append(realBord[i][j]) i+=1 j+=1 i=mylist[0]-1 j=mylist[1]-1 while 0<=j<len(realBord) and 0<=i<len(realBord): orib1.append(realBord[i][j]) i+=-1 j+=-1 return orib1 def orib2(mylist): # this def is for orib list from top right to bottom left. i=mylist[0] j=mylist[1] orib=[] while 0<=j < len(realBord) and i < len(realBord): orib.append(realBord[i][j]) i += 1 j -= 1 i = mylist[0] - 1 j = mylist[1] +1 while 0 <= j < len(realBord) and 0 <= i < len(realBord): orib.append(realBord[i][j]) i -= 1 j += 1 return orib def index(k): #this def is for finding the index of an elemnt. for item in range(len(realBord)): for j in range(len(realBord)): if realBord[item][j]==k: return [item,j] def check(n): #this def is for checking if there is any queen in those areas. i=index(n)[0] j=index(n)[1] sets=list(set(realBord[i]).union(set(column(j))).union(set(orib1(index(n)))).union(set(orib2(index(n))))) for item in range(len(sets)): if sets[item]=="Q": return False def emptyplace(mylist): #this def finds empty places for placing queens. emptyPlace1 = [] for j in range(len(mylist)): if mylist[j] == "Q" or mylist[j] == "F": pass else: if check(mylist[j]) != False: emptyPlace1.append(mylist[j]) return emptyPlace1 def queenfinder(): #this def is a primary memory for remembering where the queen was. queenlist=[] for item in range(8): for j in range(8): if primeryBord[item][j]=="Q": queenlist.append([item,j]) return queenlist def queenPlacer(x): #this def is for placing queen and which areas are not empty for other queens. i=index(x)[0] j=index(x)[1] y=orib1(index(x)) z=orib2(index(x)) oribs=list(set(y)^set(z)) for item in range(8): primeryBord[i][item]=full for item in range(8): primeryBord[item][j]=full for item in range(len(oribs)): if oribs[item]=="F" or oribs[item]=="Q": pass else: inorb=index(oribs[item]) primeryBord[int(inorb[0])][int(inorb[1])]=full primeryBord[i][j]=queen return primeryBord def maindef(): #this def is the main def for finding different situations. num=1 #these loops are for placing queens. for item1 in range(8): queenPlacer(column(0)[item1]) for item2 in range(len(emptyplace(column(1)))): queenPlacer(emptyplace(column(1))[item2]) for item3 in range(len(emptyplace(column(2)))): queenPlacer(emptyplace(column(2))[item3]) for item4 in range(len(emptyplace(column(3)))): queenPlacer(emptyplace(column(3))[item4]) for item5 in range(len(emptyplace(column(4)))): queenPlacer(emptyplace(column(4))[item5]) for item6 in range(len(emptyplace(column(5)))): queenPlacer(emptyplace(column(5))[item6]) for item7 in range(len(emptyplace(column(6)))): queenPlacer(emptyplace(column(6))[item7]) for item8 in range(len(emptyplace(column(7)))): queenPlacer(emptyplace(column(7))[item8]) print("NO.",num,":") print(tabulate(primeryBord,headers=["a","b","c","d","e","f","g","h"], showindex=["1 ","2 ","3 ","4 ","5 ","6 ","7 ","8 "])) print("-----------------------------------------------","\n") num+=1 #these loops are for change primary bord to previous level. for item9 in range(len(column(7))): primeryBord[item9][7]=realBord[item9][7] for j1 in range(len(queenfinder())): ix=int(queenfinder()[j1][0]) jx=int(queenfinder()[j1][1]) x=realBord[ix][jx] queenPlacer(x) for item10 in range(len(column(6))): primeryBord[item10][6] = realBord[item10][6] primeryBord[item10][7]=realBord[item10][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item11 in range(len(column(5))): primeryBord[item11][5]=realBord[item11][5] primeryBord[item11][6]=realBord[item11][6] primeryBord[item11][7]=realBord[item11][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item12 in range(len(column(4))): primeryBord[item12][4]=realBord[item12][4] primeryBord[item12][5]=realBord[item12][5] primeryBord[item12][6]=realBord[item12][6] primeryBord[item12][7]=realBord[item12][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item13 in range(len(column(3))): primeryBord[item13][3]=realBord[item13][3] primeryBord[item13][4]=realBord[item13][4] primeryBord[item13][5]=realBord[item13][5] primeryBord[item13][6]=realBord[item13][6] primeryBord[item13][7]=realBord[item13][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item14 in range(len(column(2))): primeryBord[item14][2]=realBord[item14][2] primeryBord[item14][3]=realBord[item14][3] primeryBord[item14][4]=realBord[item14][4] primeryBord[item14][5]=realBord[item14][5] primeryBord[item14][6]=realBord[item14][6] primeryBord[item14][7]=realBord[item14][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item15 in range(len(column(1))): primeryBord[item15][1]=realBord[item15][1] primeryBord[item15][2]=realBord[item15][2] primeryBord[item15][3]=realBord[item15][3] primeryBord[item15][4]=realBord[item15][4] primeryBord[item15][5]=realBord[item15][5] primeryBord[item15][6]=realBord[item15][6] primeryBord[item15][7]=realBord[item15][7] for j1 in range(len(queenfinder())): ix = int(queenfinder()[j1][0]) jx = int(queenfinder()[j1][1]) x = realBord[ix][jx] queenPlacer(x) for item16 in range(len(column(0))): primeryBord[item16][0]=realBord[item16][0] primeryBord[item16][1]=realBord[item16][1] primeryBord[item16][2]=realBord[item16][2] primeryBord[item16][3]=realBord[item16][3] primeryBord[item16][4]=realBord[item16][4] primeryBord[item16][5]=realBord[item16][5] primeryBord[item16][6]=realBord[item16][6] primeryBord[item16][7]=realBord[item16][7] #=============================================defs===================================================== #=============================================action===================================================== maindef() #=============================================action===================================================== # this is nima nikrouz's midterm project
nimankz/8queen-project
midterm1.2.py
midterm1.2.py
py
11,209
python
en
code
0
github-code
6
22657330763
# ----------------- # Extension Details # ----------------- name = "Space Station" version = "0.1" developer = "Type Supply" developerURL = "http://typesupply.com" roboFontVersion = "3.2" pycOnly = False menuItems = [ dict( path="menu_glyphEditorSpaceStation.py", preferredName="Glyph Editor", shortKey=("command", "/") ), dict( path="menu_fontEditorSpaceStation.py", preferredName="Font Editor", shortKey="" ) ] installAfterBuild = True # ---------------------- # Don't edit below here. # ---------------------- from AppKit import * import os import shutil from mojo.extensions import ExtensionBundle # Convert short key modifiers. modifierMap = { "command": NSCommandKeyMask, "control": NSAlternateKeyMask, "option": NSAlternateKeyMask, "shift": NSShiftKeyMask, "capslock": NSAlphaShiftKeyMask, } for menuItem in menuItems: shortKey = menuItem.get("shortKey") if isinstance(shortKey, tuple): shortKey = list(shortKey) character = shortKey.pop(-1) modifiers = [modifierMap.get(modifier, modifier) for modifier in shortKey] if len(modifiers) == 1: modifiers = modifiers[0] else: m = None for modifier in modifiers: if m is None: m = modifier else: m |= modifier modifiers = m converted = (modifiers, character) menuItem["shortKey"] = tuple(converted) # Make the various paths. basePath = os.path.dirname(__file__) sourcePath = os.path.join(basePath, "source") libPath = os.path.join(sourcePath, "code") licensePath = os.path.join(basePath, "license.txt") requirementsPath = os.path.join(basePath, "requirements.txt") extensionFile = "%s.roboFontExt" % name buildPath = os.path.join(basePath, "build") extensionPath = os.path.join(buildPath, extensionFile) # Build the extension. B = ExtensionBundle() B.name = name B.developer = developer B.developerURL = developerURL B.version = version B.launchAtStartUp = True B.mainScript = "main.py" B.html = os.path.exists(os.path.join(sourcePath, "documentation", "index.html")) B.requiresVersionMajor = roboFontVersion.split(".")[0] B.requiresVersionMinor = roboFontVersion.split(".")[1] B.addToMenu = menuItems with open(licensePath) as license: B.license = license.read() with open(requirementsPath) as requirements: B.requirements = requirements.read() print("Building extension...", end=" ") v = B.save(extensionPath, libPath=libPath, pycOnly=pycOnly) print("done!") errors = B.validationErrors() if errors: print("Uh oh! There were errors:") print(errors) # Install the extension. if installAfterBuild: print("Installing extension...", end=" ") installDirectory = os.path.expanduser("~/Library/Application Support/RoboFont/plugins") installPath = os.path.join(installDirectory, extensionFile) if os.path.exists(installPath): shutil.rmtree(installPath) shutil.copytree(extensionPath, installPath) print("done!") print("RoboFont must now be restarted.")
typesupply/spacestation
build.py
build.py
py
2,958
python
en
code
12
github-code
6
25005501771
import wizard import pooler def _check_sections(self, cr, uid, data, context): pool = pooler.get_pool(cr.dbname) data_obj = pool.get('ir.model.data') sec_obj = pool.get('crm.case.section') bug_id = sec_obj.search(cr, uid, [('code','=','BugSup')]) if not bug_id: raise wizard.except_wizard(_('Error !'), _('You did not installed the Bug Tracking when you configured the crm module.' \ '\nyou must create a section with the code \'BugSup\'.' )) else: id1 = data_obj._get_id(cr, uid, 'crm', 'crm_case_form_view') if id1: id1 = data_obj.browse(cr, uid, id1, context=context).res_id return { 'domain':"[('section_id.name','=','Bug Tracking')]", 'name': _('New Bug'), 'view_type': 'form', 'view_mode': 'form', 'res_model': 'crm.case', 'view_id': False, 'views': [(id1,'form')], 'type': 'ir.actions.act_window', } class check_section(wizard.interface): states = { 'init': { 'actions': [], 'result': {'type': 'action', 'action':_check_sections, 'state' : 'end'} }, } check_section('portal.crm.check.section') # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
factorlibre/openerp-extra-6.1
portal_project/wizard/wizard_check_section.py
wizard_check_section.py
py
1,342
python
en
code
9
github-code
6
19208530297
''' This program is used to get information from a user and make an email from that information ''' #asking for the user's first name and then storing it in the variable firstName firstName = input("Enter your first name: ") #asking for the user's last name and then storing it in the variable lastName lastName = input("Enter your last name: ") #asking for the user's domain name and then storing it in the variable domainName domainName = input("Enter your domain name: ") #creating the full email address emailAddress = (lastName + "." + firstName + "@" + domainName) #printing all the information to the user about their newly assigned email address print("Hello " + firstName + ",\nYour new email address is: " + emailAddress)
kelvincaoyx/UTEA-PYTHON
Week 1/pythonUnitOnePractice/email.py
email.py
py
740
python
en
code
0
github-code
6
11932438017
from env import data from selenium import webdriver from selenium.webdriver.common.action_chains import ActionChains from selenium.webdriver.support.ui import Select from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from time import sleep #Program Isi Data def program(data_set): #masuk website browser = webdriver.Chrome() actions = ActionChains(browser) browser.get(data['linkActive']) print('==== Welcome To Bangef, Automated Post-Test ===='); try: for d in data_set: # mengecek apakah elemen input sudah ada dan mengisikannya # Nama WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][0])) ).send_keys(d['namaLengkap']) # Email WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][1])) ).send_keys(d['email']) # Nomer Telepon WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][2])) ).send_keys('0'+d['noTelpon']) # Jenis Kelamin elementJK = browser.find_element(By.ID, data['selectorById'][3]) Select(elementJK).select_by_value(d['jk']) # Usia WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][4])) ).send_keys(d['usia']) # Pekerjaan elementPekerjaan = browser.find_element(By.ID, data['selectorById'][5]) Select(elementPekerjaan).select_by_value(d['pekerjaan']) # Komunitas WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][6])) ).send_keys(d['organisasi']) # Pendidikan elementPendidikan = browser.find_element(By.ID, data['selectorById'][7]) Select(elementPendidikan).select_by_value(d['pendidikan']) # Provinsi WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][8])) ).send_keys(d['provinsi'], Keys.RETURN) # Kota Asal elementCities = browser.find_element(By.ID, data['selectorById'][9]) elementCities.send_keys(d['kotaAsal'], Keys.RETURN) # Captcha browser.execute_script("arguments[0].scrollIntoView();", elementCities) captcha = input('Masukan validasi captcha (sample : 9*9): \n'); arr = list(captcha) if arr[1] == '+' : result = int(arr[0]) + int(arr[2]) else : result = int(arr[0]) * int(arr[2]) browser.find_element(By.ID, data['selectorById'][10]).send_keys(result) # Select Radio Button q1 = browser.find_element(By.ID, "1070-"+d['qSatu']) browser.execute_script("arguments[0].scrollIntoView();", q1) sleep(.5) q1.click() q2 = browser.find_element(By.ID, "1071-"+d['qDua']) browser.execute_script("arguments[0].scrollIntoView();", q2) q2.click() q3 = browser.find_element(By.ID, "1072-"+d['qTiga']) browser.execute_script("arguments[0].scrollIntoView();", q3) q3.click() q4 = browser.find_element(By.ID, "1073-"+d['qEmpat']) actions.move_to_element(q4).click().perform() browser.execute_script("arguments[0].scrollIntoView();", q4) sleep(.5) q4.click() q5 = browser.find_element(By.ID, "1076-"+d['qLima']) browser.execute_script("arguments[0].scrollIntoView();", q5) q5.click() # submit footer = browser.find_element(By.CSS_SELECTOR, '#__next > div > div.footer.mt-3') browser.execute_script("arguments[0].scrollIntoView();", footer) sleep(1) browser.find_element(By.XPATH, data['selectorByXpath']).click() sleep(3) # kembali ke page sebelumnya browser.get(data['linkActive']) WebDriverWait(browser, 10).until( EC.presence_of_element_located((By.ID, data['selectorById'][0])) ) print('Data dengan atas nama '+d['namaLengkap']+' berhasil ✔️') print('Total Data : '+ str(d['id']) +' Selesai Post Test') except Exception as err: print('Data Selesai Terakhir : "id": "'+str(d['id'])+'".') print(err) browser.quit()
bangef/pz
python/post-test/module/program.py
program.py
py
4,797
python
en
code
0
github-code
6
34294693162
import random as r class node: def __init__(self,val) -> None: self.data=val self.left=None self.right=None class BST: def __init__(self) -> None: self.root=None def insertR(self,data,root): if root==None: return node(data) else: if data<self.root.data: root.left=self.insertR(data,root.left) else: root.right=self.insertR(data,root.right) return root def inorder(self,root): current=root if current==None: return self.inorder(current.left) print(current.data) self.inorder(current.right) if __name__=='__main__': tree=BST() lister=[] for i in range(12): lister.append(r.randint(10,123)) for val in lister: tree.root=tree.insertR(val,tree.root) tree.inorder(tree.root)
farhan1503001/Data-Structures-203-IUB
Binary Search Tree/insertR.py
insertR.py
py
917
python
en
code
2
github-code
6
35839328750
import argparse from distutils.util import strtobool import pathlib import siml import convert_raw_data def main(): parser = argparse.ArgumentParser() parser.add_argument( 'settings_yaml', type=pathlib.Path, help='YAML file name of settings.') parser.add_argument( 'raw_data_directory', type=pathlib.Path, help='Raw data directory') parser.add_argument( '-p', '--preprocessors-pkl', type=pathlib.Path, default=None, help='Preprocessors.pkl file') parser.add_argument( '-o', '--out-dir', type=pathlib.Path, default=None, help='Output directory name') parser.add_argument( '-f', '--force-renew', type=strtobool, default=0, help='If True, overwrite existing data [False]') parser.add_argument( '-l', '--light', type=strtobool, default=0, help='If True, compute minimum required data only [False]') parser.add_argument( '-n', '--read-npy', type=strtobool, default=1, help='If True, read .npy files instead of original files ' 'if exists [True]') parser.add_argument( '-r', '--recursive', type=strtobool, default=1, help='If True, process directory recursively [True]') parser.add_argument( '-e', '--elemental', type=strtobool, default=0, help='If True, create also elemental features [False]') parser.add_argument( '-a', '--convert-answer', type=strtobool, default=1, help='If True, convert answer [True]') parser.add_argument( '-s', '--skip-interim', type=strtobool, default=0, help='If True, skip conversion of interim data [False]') args = parser.parse_args() main_setting = siml.setting.MainSetting.read_settings_yaml( args.settings_yaml) if not args.convert_answer: main_setting.conversion.required_file_names = ['*.msh', '*.cnt'] main_setting.data.raw = args.raw_data_directory if args.out_dir is None: args.out_dir = args.raw_data_directory main_setting.data.interim = [siml.prepost.determine_output_directory( main_setting.data.raw, main_setting.data.raw.parent / 'interim', 'raw')] main_setting.data.preprocessed = [ siml.prepost.determine_output_directory( main_setting.data.raw, main_setting.data.raw.parent / 'preprocessed', 'raw')] else: main_setting.data.interim = [args.out_dir / 'interim'] main_setting.data.preprocessed = [args.out_dir / 'preprocessed'] if not args.skip_interim: conversion_function = convert_raw_data.HeatConversionFuncionCreator( create_elemental=args.elemental, convert_answer=args.convert_answer, light=args.light) raw_converter = siml.prepost.RawConverter( main_setting, conversion_function=conversion_function, filter_function=convert_raw_data.filter_function_heat, force_renew=args.force_renew, recursive=args.recursive, to_first_order=True, write_ucd=False, read_npy=args.read_npy, read_res=args.convert_answer) raw_converter.convert() preprocessor = siml.prepost.Preprocessor( main_setting, force_renew=args.force_renew, allow_missing=True) preprocessor.convert_interim_data(preprocessor_pkl=args.preprocessors_pkl) return if __name__ == '__main__': main()
yellowshippo/isogcn-iclr2021
src/preprocess_raw_data_with_preprocessors.py
preprocess_raw_data_with_preprocessors.py
py
3,638
python
en
code
42
github-code
6
7874667169
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 22 16:48:54 2019 @author: xiaohaoren """ import json import pickle import numpy as np negative_word = ['悶熱','吵雜','髒','髒亂','加強','改進','缺點'] def Load_All_Info(json_path,pickle_path): with open(json_path,'r') as fp: json_data = json.load(fp) with open(pickle_path, 'rb') as fp: pickle_data = pickle.load(fp) keys = list(json_data.keys()) return json_data,pickle_data,keys def FilteringAndRanking(querys,places,corpus,review_list=None): """ query = ['冷氣','衛生',...] place = ['春山茶水舖','小川拉麵',...] corpus = {'春山茶水舖':{'不錯':(正向次數,評論編號),'五花肉':(正向分數,評論編號),...}} """ scoreboard = {} for i,place in enumerate(places): #N = corpus[place]['__termNum__'] N = corpus[place]['__reviewNum__'] scoreboard[place]=0 if place not in corpus: continue for term in querys: term_score = 0 term_sign = -1 if term in negative_word else 1 if term not in corpus[place]: continue else: keyword_data = corpus[place][term] for rid,p in keyword_data.items(): term_score += (term_sign * p) if review_list is not None: rid = int(rid) review_content = review_list[rid] print('"%s"由於「%s」中的"%s"而加%d分' % (place,review_content,term,term_sign*p)) scoreboard[place] += term_score scoreboard[place] = scoreboard[place]/(N*len(querys)) * 100 return scoreboard if __name__ == "__main__": corpus_path = '../data/place_dict.json' reviewContent_path = '../data/review_list.json' querys = ['乾淨','衛生'] corpus,review_list,places = Load_All_Info(json_path=corpus_path,pickle_path=reviewContent_path) scoreboard = FilteringAndRanking(querys=querys,places=places,corpus=corpus,review_list=review_list)
e841018/DinnerSelector
utils/Filtering.py
Filtering.py
py
2,301
python
en
code
0
github-code
6
28120118270
import numpy as np import pandas as pd class Model: def __init__(self, bias: float, age_y: float, bmi: float, bmisq, gender: float, dysrhythmia: float, heart_failure: float, dys_hf_interaction: float, discharge_home_self: float, discharge_facility: float, ed_visits: float, psych_dx: float, pta_med_count: float, drug_abuse_dx: float, narcotic_meds: float, tja_within_past_yr: float): """Input regression coefficients as positional or named parameters. Keep them organized and expose list or data frame. Note: 16 coefficients. """ self.as_list = [bias, age_y, bmi, bmisq, gender, dysrhythmia, heart_failure, dys_hf_interaction, discharge_home_self, discharge_facility, ed_visits, psych_dx, pta_med_count, drug_abuse_dx, narcotic_meds, tja_within_past_yr] row_names = ['bias', 'age_y', 'bmi', 'bmi ** 2', '(gender == male)', 'dysrhythmia', 'heart_failure', 'dysrhythmia * heart_failure', 'disch_home_or_self', 'disch_facility', '(ed_visits > 9)', 'psych_dx', 'pta_med_count', 'drug_abuse_dx', 'narcotic_meds', 'TJA within past yr'] self.as_dataframe = pd.DataFrame(self.as_list, index=row_names) class Patient: def __init__(self, age_y: float, bmi: float, gender: str, dysrhythmia: bool, heart_failure: bool, discharge: str, ed_visits: int, psych_dx: bool, pta_med_count: float, drug_abuse_dx: bool, narcotic_meds: bool, tja_within_past_12_mo: bool): """Input 12 patient characteristics as positional or named parameters. Keep them organized. Expose list of 16 numbers, for multiplying with model coefficients. """ # self.age_y = age_y # self.bmi = bmi # self.gender = gender # self.dysrhythmia = dysrhythmia # self.heart_failure = heart_failure # self.discharge = discharge # self.ed_visits = ed_visits # self.psych_dx = psych_dx # self.pta_med_count = pta_med_count # self.drug_abuse_dx = drug_abuse_dx # self.narcotic_meds = narcotic_meds # self.tja_within_past_12_mo = tja_within_past_12_mo self.as_list = [1, age_y, bmi, bmi ** 2, gender == 'male', dysrhythmia, heart_failure, dysrhythmia and heart_failure, discharge == 'home' or discharge == 'self-care', discharge == 'facility', ed_visits > 9, psych_dx, pta_med_count, drug_abuse_dx, narcotic_meds, tja_within_past_12_mo] model_90_days = Model( -0.5527, 0, # age -0.0903, # bmi 0.00145, # bmi ** 2 0.2241, # (gender == 'male') -0.1169, # dysrhythmia -0.1284, # heart_failure 0.7544, # dysrhythmia * heart_failure -0.2464, # (discharge == 'home' or discharge == 'self-care') 0.3233, # (discharge == 'facility') 0.3325, # (ed_visits > 9) 0, # psych dx 0.0193, # pta_med_count 0.2475, # drug_abuse_dx 0.1296, # narcotic_meds -0.3820 # tja_within_past_12_mo ) model_30_days = Model(-2.6576, 0.0291, -0.1345, 0.00218, 0.2070, -0.0505, -0.3669, 0.7994, -0.3124, 0.3645, 0.5942, 0.1934, 0.0332, 0, 0, 0) p = Patient(65, 30, 'male', True, True, 'home', 3, False, 5, False, True, False) if __name__ == '__main__': print("Patient, length =", len(p.as_list)) print(p.as_list) print() print("Model, length =", len(model_30_days.as_list)) print(model_30_days.as_list) print() print("Score =", np.dot(p.as_list, model_30_days.as_list))
zimolzak/py-medical-functions
ortho_readmission.py
ortho_readmission.py
py
3,867
python
en
code
1
github-code
6
71175312187
import re import time import textwrap from copy import copy import torch.nn.functional as F from training_utils import * BASH_FORMATTING = { 'PURPLE': '\033[95m', 'CYAN': '\033[96m', 'DARKCYAN': '\033[36m', 'BLUE': '\033[94m', 'GREEN': '\033[92m', 'YELLOW': '\033[93m', 'RED':'\033[91m', 'BOLD': '\033[1m', 'UNDERLINE': '\033[4m', 'END': '\033[0m' } def bash_format_text(text, *args): formatting = '' for arg in args: formatting += BASH_FORMATTING[arg] return formatting + text + BASH_FORMATTING['END'] # maybe add do_sample ? # randomly select one of two values that evaluate to true or false lols hehehe def transfer_learning_bot(model, tokenizer, max_length, top_k, top_p): ''' for chatbot trained using transfer learning ''' input_sentence = input('User >> ') input_sentence = input_sentence.lower() context = copy(input_sentence) input_sentence = tokenizer.encode(input_sentence, truncation = True, max_length = 128, return_tensors = 'pt') continue_convo = True while continue_convo: print(bash_format_text('Typing...', 'YELLOW', 'BOLD'), end='\r' ) uni_temp = round(torch.rand(1).clamp(0.1).item(), 2) repeat_penalty = round((torch.rand(1) * 5).clamp(1).item(), 2) ngram = int(np.random.choice([2,3,4], 1)[0]) bot_reply = model.generate(input_sentence, max_length = max_length, top_k = top_k, top_p = top_p, temperature = uni_temp, repetition_penalty = repeat_penalty, skip_special_tokens = True, no_repeat_ngram_size=ngram, pad_token_id = tokenizer.eos_token_id) # length_penalty=length_penalty) bot_reply = tokenizer.decode(bot_reply.squeeze()).replace('<|endoftext|>', '') bot_reply = textwrap.fill(bot_reply, width=75) print(bash_format_text('Aubrey: {}'.format(bot_reply), 'YELLOW', 'BOLD')) response = input('User >> ') if (response == 'q' or response == 'quit' or response == 'exit'): continue_convo = False input_sentence = tokenizer.encode(response.lower(), truncation= True, max_length = 128, return_tensors = 'pt')
amauriciorr/AubreyBot
chat_utils.py
chat_utils.py
py
2,389
python
en
code
2
github-code
6
33359786284
from unittest import TestCase import unittest import requests # import sys # # sys.path.insert(0, '../../src') class TestLoadTimeSeries(TestCase): def test_load_data_success(self): f = open("tests/routes/time_series_covid19_recovered_global.csv", "rb") file = f.read() url = 'https://covid-monitor-61.herokuapp.com/time_series/data?type=recovered' r = requests.post(url, data=file, headers={"Content-Type": "text/csv"}) f.close() self.assertEqual(r.status_code, 200) def test_query_data(self): url = 'https://covid-monitor-61.herokuapp.com/time_series/cases' body = {"return_type": "json", "start_date": "01/26/20", "end_date": "01/28/20", "types": ["Recovered"], "locations": [ {"Country/Region": "Albania"}, {"Country/Region": "Canada", "Province/State": "Ontario"}, {"Country/Region": "Australia"} ] } r = requests.post(url, json=body, headers={"Content-Type": "application/json"}) self.assertEqual(r.status_code, 200) if __name__ == '__main__': unittest.main()
shin19991207/CSC301-A2
tests/routes/test_time_series.py
test_time_series.py
py
1,255
python
en
code
0
github-code
6
25254340151
import numpy as np import sys from vispy import app, visuals, scene # build visuals Plot3D = scene.visuals.create_visual_node(visuals.line.line.LineVisual) # build canvas canvas = scene.SceneCanvas(keys='interactive', title='plot3d', show=True) # Add a ViewBox to let the user zoom/rotate view = canvas.central_widget.add_view() view.camera = 'turntable' view.camera.fov = 45 view.camera.distance = 6 # prepare data x, y, z, segments = [], [], [], [] for start, i in enumerate(np.linspace(-5, 5, 1000)): N = 6000 x.append(np.sin(np.linspace(-5-i, 5+1, N)*np.pi)) y.append(np.cos(np.linspace(-5+i, 5-i, N)*np.pi)) z.append(np.linspace(-5-i, 5-i, N)) start_idx = 1000 * start idxs = np.arange(start_idx, start_idx+N-1) idxs = np.stack([idxs, idxs+1], axis=-1) segments.append(idxs) x, y, z = np.concatenate(x), np.concatenate(y), np.concatenate(z) segments = np.concatenate(segments, axis=0) # plot pos = np.c_[x, y, z] Plot3D(pos, width=10.0, color=(1.0, 0.0, 0.0, 1.0), method='gl', connect=segments, parent=view.scene) if __name__ == '__main__': if sys.flags.interactive != 1: app.run()
ptmorris03/Clip3D
lines.py
lines.py
py
1,152
python
en
code
0
github-code
6
22312741825
#Considere uma tupla que guarde temperaturas em Celsius (C) ou Fahrenheit (F) # como um valor em duas partes: temperatura e escala. Por exemplo: # 32,5 graus Celsius é representado como (32.5, ‘C’) e 45,2 graus Fahrenheit # é representado como (45.2, ‘F’). Desenvolva uma função que soma duas # temperaturas que podem estar em Celsius ou em Fahrenheit. Se as duas # temperaturas estiverem na mesma escala, a resposta deve estar na mesma escala. # Se as temperaturas estiverem em escalas diferentes, a resposta deve ser dada na # escala da segunda temperatura. Considere até 4 (quatro) casas decimais). soma = () t = (float(input()), str(input()).upper().strip()) t2 = (float(input()), str(input()).upper().strip()) if t[1] == t2 [1]: soma = t[0] + t2[0] print(f"({soma}, '{t[1]}')") elif t[1] != t2[1] and t[1] == 'C': F = 9 * t[0] / 5 + 32 soma = F + t2[0] print(f"({soma}, '{t2[1]}')") elif t[1] != t2 and t[1] == 'F': C = (t[0] - 32) * (5/9) soma = C + t2[0] print(f"({soma:.4f}, '{t2[1]}')")
AlcionePereira/semana-14-1-parte
soma.py
soma.py
py
1,109
python
pt
code
0
github-code
6
333459228
import argparse import glob import os import h5py import hdbscan import numpy as np from scipy.ndimage import binary_erosion from skimage.filters import gaussian from skimage.segmentation import watershed from sklearn.cluster import MeanShift def expand_labels_watershed(seg, raw, erosion_iters=4): bg_mask = seg == 0 # don't need to do anything if we only have background if bg_mask.size == int(bg_mask.sum()): return seg hmap = gaussian(raw, sigma=1.) bg_mask = binary_erosion(bg_mask, iterations=erosion_iters) seg_new = seg.copy() bg_id = int(seg.max()) + 1 seg_new[bg_mask] = bg_id seg_new = watershed(hmap, seg_new) seg_new[seg_new == bg_id] = 0 return seg_new def cluster(emb, clustering_alg, semantic_mask=None): output_shape = emb.shape[1:] # reshape (E, D, H, W) -> (E, D * H * W) and transpose -> (D * H * W, E) flattened_embeddings = emb.reshape(emb.shape[0], -1).transpose() result = np.zeros(flattened_embeddings.shape[0]) if semantic_mask is not None: flattened_mask = semantic_mask.reshape(-1) assert flattened_mask.shape[0] == flattened_embeddings.shape[0] else: flattened_mask = np.ones(flattened_embeddings.shape[0]) if flattened_mask.sum() == 0: # return zeros for empty masks return result.reshape(output_shape) # cluster only within the foreground mask clusters = clustering_alg.fit_predict(flattened_embeddings[flattened_mask == 1]) # always increase the labels by 1 cause clustering results start from 0 and we may loose one object result[flattened_mask == 1] = clusters + 1 return result.reshape(output_shape) def cluster_hdbscan(emb, min_size, eps, min_samples=None, semantic_mask=None): clustering = hdbscan.HDBSCAN(min_cluster_size=min_size, cluster_selection_epsilon=eps, min_samples=min_samples) return cluster(emb, clustering, semantic_mask) def cluster_ms(emb, bandwidth, semantic_mask=None): clustering = MeanShift(bandwidth=bandwidth, bin_seeding=True) return cluster(emb, clustering, semantic_mask) def run_clustering(emb, clustering, delta_var, min_size, expand_labels, remove_largest): assert clustering in ['ms', 'hdbscan'] if clustering == 'hdbscan': clusters = cluster_hdbscan(emb, min_size, delta_var) else: clusters = cluster_ms(emb, delta_var) # watershed the empty (i.e. noise) region if expand_labels: clusters = expand_labels_watershed(clusters, raw) if remove_largest: ids, counts = np.unique(clusters, return_counts=True) clusters[ids[np.argmax(counts)] == clusters] = 0 return clusters if __name__ == '__main__': parser = argparse.ArgumentParser(description='Segment embryos') parser.add_argument('--emb_dir', type=str, help='Path to embedding predictions directory', required=True) parser.add_argument('--clustering', type=str, help='Clustering algorithm: ms or hdbscan', required=True) parser.add_argument('--seg_ds', type=str, help='Output seg dataset name', required=True) parser.add_argument('--delta_var', type=float, help='delta_var param', default=0.5) parser.add_argument('--min_size', type=int, help='HDBSCAN min_size param', default=50) parser.add_argument('--remove_largest', help='Remove largest instance (BG)', action='store_true') parser.add_argument('--expand_labels', help='Expand labels with watershed', action='store_true') parser.add_argument('--min_instance_size', type=int, help='Min instance size filtering', required=False, default=None) args = parser.parse_args() assert os.path.isdir(args.emb_dir) for file_path in glob.glob(os.path.join(args.emb_dir, '*predictions.h5')): _, filename = os.path.split(file_path) print(f'Processing {filename}') with h5py.File(file_path, 'r+') as f: raw_sequence = f['raw_sequence'][:] embedding_sequence = f['embedding_sequence1'][:] seg_sequence = [] i = 0 for raw, emb in zip(raw_sequence, embedding_sequence): i += 1 print(f'Processing patch {i}') seg = run_clustering(emb, args.clustering, args.delta_var, args.min_size, args.expand_labels, args.remove_largest) seg_sequence.append(seg) if args.seg_ds in f: del f[args.seg_ds] segments = np.stack(seg_sequence, axis=0) f.create_dataset(args.seg_ds, data=segments, compression='gzip') print('Done')
kreshuklab/takafumi_embryos_segmentation
utils/cluster.py
cluster.py
py
4,632
python
en
code
0
github-code
6
25965027391
import json import os from contextlib import suppress from math import sqrt from typing import Tuple import numpy as np import pandas as pd from openpyxl import load_workbook, styles, utils from PIL import Image def to_excel( image: Image, path: str, lower_image_size_by: int = 10, **spreadsheet_kwargs ) -> None: """ - Added on release 0.0.1; - Coded originally on https://github.com/Eric-Mendes/image2excel Saves an image as a `.xlsx` file by coloring its cells each pixel's color. ## Parameters * :param image: Your image opened using the `PIL.Image` module; * :param path: The path that you want to save your output file. Example: `/home/user/Documents/my_image.xlsx`; * :param lower_image_size_by: A factor that the function will divide your image's dimensions by. Defaults to `10`; * It is very important that you lower your image's dimensions because a big image might take the function a long time to process plus your spreadsheet will probably take a long time to load on any software that you use to open it; * :param **spreadsheet_kwargs: See below. ## Spreadsheet Kwargs Optional parameters to tweak the spreadsheet's appearance. * :param row_height (`float`): the rows' height. Defaults to `15`; * :param column_width (`float`): the columns' width. Defaults to `2.3`; * The default values on `row_height` and `column_width` were specifically thought out so that they make the cells squared, however - as any hardcoded value - they might not do the trick on your device. That is when you might want to tweak them a little bit. * :param delete_cell_value (`bool`): wheter to keep or not the text corresponding to that color. Defaults to `True`; * :param zoom_scale (`int`): how much to zoom in or out on the spreadsheet. Defaults to `20` which seems to be the default max zoom out on most spreadsheet softwares. ## Return * :return: `None`, but outputs a `.xlsx` file on the given `path`. """ image = image.convert("RGB") # Resizing image image = image.resize( (image.size[0] // lower_image_size_by, image.size[1] // lower_image_size_by) ) # OpenPyxl colors work in a weird way image_colors_processed = [ ["%02x%02x%02x" % tuple(item) for item in row] for row in np.array(image).tolist() ] df = pd.DataFrame(image_colors_processed) image_name = os.path.splitext(os.path.split(path)[1])[0] # Saving a DataFrame where each cell has a text corresponding to the RGB color its background should be df.to_excel(path, index=False, header=False) # Loading the excel file, painting each cell with its color and saving the updates wb = load_workbook(path) ws = wb.active ws.title = image_name for row in range(1, df.shape[0] + 1): for col in range(1, df.shape[1] + 1): cell = ws.cell(row=row, column=col) # Makes cells squared ws.row_dimensions[row].height = spreadsheet_kwargs.get("row_height", 15) ws.column_dimensions[ utils.get_column_letter(col) ].width = spreadsheet_kwargs.get("column_width", 2.3) # Painting the cell cell.fill = styles.PatternFill( start_color=cell.value, end_color=cell.value, fill_type="solid" ) if spreadsheet_kwargs.get("delete_cell_value", True): cell.value = None # Deletes the text from the cell # Saves spreadsheet already zoomed in or out ws.sheet_view.zoomScale = spreadsheet_kwargs.get("zoom_scale", 20) wb.save(path) def to_minecraft( image: Image, path: str, lower_image_size_by: int = 10, player_pos: Tuple[int, int, int] = (0, 0, 0), minecraft_version: str = '1.18.2', ) -> None: """ - Added on release 0.0.1; - Coded originally on https://github.com/Eric-Mendes/pixel-art-map Saves an image as a minecraft datapack that when loaded into your world will build a pixel art of it on the player's position. ## Parameters * :param image: Your image opened using the `PIL.Image` module; * :param path: The path that you want to save your datapack. Example: `/home/user/Documents/my_image_datapack`; * :param lower_image_size_by: A factor that the function will divide your image's dimensions by. Defaults to `10`; * :param player_pos: The player's (x, y, z) position. Defaults to `(0, 0, 0)`; * :param minecraft_version: The minecraft client version (x.xx.x). Default is `1.18.2`. ## Return * :return: `None`, but outputs a datapack on the given `path`. """ image = image.convert("RGB") # Makes the commands that the datapack will run when loaded def script(df, **kwargs): player_pos = [ kwargs.get("player_x", 0), kwargs.get("player_y", 0), kwargs.get("player_z", 0), ] z = (df != df.shift()).cumsum() zri = z.reset_index() ix_name = z.index.name co_name = z.columns.name for i in z: v = zri.groupby(i)[ix_name].agg(["first", "last"]) s = {co_name: i} e = {co_name: i} for _, r in v.iterrows(): s[ix_name] = r["first"] e[ix_name] = r["last"] material = df.loc[r["first"], i] yield f'fill {s["x"] + player_pos[0]} {0 + player_pos[1]} {s["z"] + player_pos[2]} {e["x"] + player_pos[0]} {0 + player_pos[1]} {e["z"] + player_pos[2]} {material.split(",")[0].strip()}' # Helper function. Loads the blocks an the colors they have when looked at via map, # and maps the pixels to the blocks blocks = [ { "rgb": (127, 178, 56), "blocks": ("grass_block", "slime_block"), }, { "rgb": (247, 233, 163), "blocks": ("sand", "birch_planks", "birch_log[axis=y]", "stripped_birch_log[axis=x]", "birch_wood", "stripped_birch_wood", "birch_sign", "birch_pressure_plate", "birch_trapdoor", "birch_stairs", "birch_slab", "birch_fence_gate", "birch_fence", "birch_door", "sandstone", "glowstone", "end_stone", "end_stone_brick_slab", "end_stone_brick_stairs", "end_stone_brick_wall", "bone_block", "turtle_egg", "scaffolding", "candle"), }, { "rgb": (199, 199, 199), "blocks": ("mushroom_stem", "cobweb", "white_bed[part=head]", "white_candle"), }, { "rgb": (255, 0, 0), "blocks": ("redstone_block", "tnt", "lava", "fire"), }, { "rgb": (160, 160, 255), "blocks": ("ice", "frosted_ice", "packed_ice", "blue_ice"), }, { "rgb": (167, 167, 167), "blocks": ("iron_block", "iron_door", "brewing_stand", "heavy_weighted_pressure_plate", "iron_trapdoor", "lantern", "anvil", "grindstone", "soul_lantern", "lodestone"), }, { "rgb": (0, 124, 0), "blocks": ("oak_sapling", "spruce_sapling", "birch_sapling", "jungle_sapling", "acacia_sapling", "dark_oak_sapling", "dandelion", "poppy", "blue_orchid", "allium", "azure_bluet", "red_tulip", "orange_tulip", "white_tulip", "pink_tulip", "oxeye_daisy", "cornflower", "lily_of_the_valley", "wither_rose", "sunflower", "lilac", "rose_bush", "peony", "wheat[age=7]", "sugar_cane[age=9]", "pumpkin_stem[age=7]", "melon_stem[age=7]", "lily_pad", "cocoa[age=2]", "carrots[age=7]", "potatoes[age=7]", "beetroots[age=7]", "sweet_berry_bush[age=3]", "grass", "fern", "vine", "oak_leaves", "spruce_leaves", "birch_leaves", "jungle_leaves", "acacia_leaves", "dark_oak_leaves", "azalea_leaves", "flowering_azalea_leaves", "cactus[age=9]", "bamboo[age=1]", "cave_vines", "spore_blossom", "flowering_azalea", "big_dripleaf", "small_dripleaf"), }, { "rgb": (255, 255, 255), "blocks": ("snow", "snow_block", "white_bed[part=foot]", "white_wool", "white_stained_glass", "white_carpet", "white_shulker_box", "white_glazed_terracotta", "white_concrete", "white_concrete_powder", "powder_snow"), }, { "rgb": (164, 168, 184), "blocks": ("clay", "infested_chiseled_stone_bricks", "infested_cobblestone", "infested_cracked_stone_bricks", "infested_mossy_stone_bricks", "infested_stone", "infested_stone_bricks"), }, { "rgb": (151, 109, 77), "blocks": ("coarse_dirt", "dirt", "farmland", "dirt_path", "granite_slab", "granite_stairs", "granite_wall", "polished_granite_slab", "polished_granite_stairs", "jungle_planks", "jungle_log[axis=y]", "stripped_jungle_log[axis=x]", "jungle_wood", "stripped_jungle_wood", "jungle_sign", "jungle_pressure_plate", "jungle_trapdoor", "jungle_stairs", "jungle_slab", "jungle_fence_gate", "jungle_fence", "jungle_door", "jukebox", "brown_mushroom_block", "rooted_dirt", "hanging_roots"), }, { "rgb": (112, 112, 112), "blocks": ("stone", "stone_slab", "stone_stairs", "andesite_slab", "andesite_stairs", "andesite_wall", "polished_andesite_slab", "polished_andesite_stairs", "cobblestone_slab", "cobblestone_stairs", "cobblestone_wall", "bedrock", "gold_ore", "iron_ore", "coal_ore", "lapis_lazuli_ore", "dispenser", "mossy_cobblestone_slab", "mossy_cobblestone_stairs", "mossy_cobblestone_wall", "spawner", "diamond_ore", "furnace", "stone_pressure_plate", "redstone_ore", "stone_bricks", "emerald_ore", "ender_chest", "dropper", "smooth_stone_slab", "observer", "smoker", "blast_furnace", "stonecutter", "sticky_piston", "piston", "piston_head", "gravel", "acacia_log[axis=z]", "cauldron", "hopper", "copper_ore"), }, { "rgb": (64, 64, 255), "blocks": ("water", "kelp", "seagrass", "bubble_column"), }, { "rgb": (143, 119, 72), "blocks": ("oak_planks", "oak_log[axis=y]", "stripped_oak_log[axis=x]", "oak_wood", "stripped_oak_wood", "oak_sign", "oak_pressure_plate", "oak_trapdoor", "oak_stairs", "oak_slab", "oak_fence_gate", "oak_fence", "oak_door", "note_block", "bookshelf", "chest", "crafting_table", "trapped_chest", "daylight_detector", "loom", "barrel", "cartography_table", "fletching_table", "lectern", "smithing_table", "composter", "bamboo_sapling", "dead_bush", "petrified_oak_slab", "beehive", "white_banner"), }, { "rgb": (255, 252, 245), "blocks": ("quartz_block", "diorite_stairs", "diorite_slab", "diorite_wall", "polished_diorite_stairs", "polished_diorite_slab", "birch_log[axis=x]", "sea_lantern", "target"), }, { "rgb": (216, 127, 51), "blocks": ("acacia_planks", "acacia_log[axis=y]", "stripped_acacia_log[axis=x]", "acacia_wood", "stripped_acacia_wood", "acacia_sign", "acacia_pressure_plate", "acacia_trapdoor", "acacia_stairs", "acacia_slab", "acacia_fence_gate", "acacia_fence", "acacia_door", "red_sand", "orange_wool", "orange_carpet", "orange_shulker_box", "orange_bed[part=foot]", "orange_stained_glass", "orange_glazed_terracotta", "orange_concrete", "orange_concrete_powder", "orange_candle", "pumpkin", "carved_pumpkin", "jack_o_lantern", "terracotta", "red_sandstone", "honey_block", "honeycomb_block", "copper_block", "lightning_rod", "raw_copper_block"), }, { "rgb": (178, 76, 216), "blocks": ("magenta_wool", "magenta_carpet", "magenta_shulker_box", "magenta_bed[part=foot]", "magenta_stained_glass", "magenta_glazed_terracotta", "magenta_concrete", "magenta_concrete_powder", "magenta_candle", "purpur_block"), }, { "rgb": (102, 153, 216), "blocks": ("light_blue_wool", "light_blue_carpet", "light_blue_shulker_box", "light_blue_bed[part=foot]", "light_blue_stained_glass", "light_blue_glazed_terracotta", "light_blue_concrete", "light_blue_concrete_powder", "light_blue_candle", "soul_fire"), }, { "rgb": (229, 229, 51), "blocks": ("sponge", "wet_sponge", "yellow_wool", "yellow_carpet", "yellow_shulker_box", "yellow_bed[part=foot]", "yellow_stained_glass", "yellow_glazed_terracotta", "yellow_concrete", "yellow_concrete_powder", "yellow_candle", "hay_bale", "horn_coral_block[waterlogged=true]", "bee_nest"), }, { "rgb": (127, 204, 25), "blocks": ("lime_wool", "lime_carpet", "lime_shulker_box", "lime_bed[part=foot]", "lime_stained_glass", "lime_glazed_terracotta", "lime_concrete", "lime_concrete_powder", "lime_candle", "melon"), }, { "rgb": (242, 127, 165), "blocks": ("pink_wool", "pink_carpet", "pink_shulker_box", "pink_bed[part=foot]", "pink_stained_glass", "pink_glazed_terracotta", "pink_concrete", "pink_concrete_powder", "pink_candle", "brain_coral_block[waterlogged=true]"), }, { "rgb": (76, 76, 76), "blocks": ("acacia_wood", "gray_wool", "gray_carpet", "gray_shulker_box", "gray_bed[part=foot]", "gray_stained_glass", "gray_glazed_terracotta", "gray_concrete", "gray_concrete_powder", "gray_candle", "dead_coral_block", "tinted_glass"), }, { "rgb": (153, 153, 153), "blocks": ("light_gray_wool", "light_gray_carpet", "light_gray_shulker_box", "light_gray_bed[part=foot]", "light_gray_stained_glass", "light_gray_glazed_terracotta", "light_gray_concrete", "light_gray_concrete_powder", "light_gray_candle", "structure_block", "jigsaw"), }, { "rgb": (76, 127, 153), "blocks": ("cyan_wool", "cyan_carpet", "cyan_shulker_box", "cyan_bed[part=foot]", "cyan_stained_glass", "cyan_glazed_terracotta", "cyan_concrete", "cyan_concrete_powder", "cyan_candle", "prismarine_slab", "prismarine_stairs", "prismarine_wall", "warped_roots", "warped_fungus", "twisting_vines", "nether_sprouts", "sculk_sensor"), }, { "rgb": (127, 63, 178), "blocks": ("shulker_box", "purple_wool", "purple_carpet", "purple_shulker_box", "purple_bed[part=foot]", "purple_stained_glass", "purple_glazed_terracotta", "purple_concrete", "purple_concrete_powder", "purple_candle", "mycelium", "chorus_plant", "chorus_flower", "repeating_command_block", "bubble_coral_block", "amethyst_block", "budding_amethyst", "amethyst_cluster"), }, { "rgb": (51, 76, 178), "blocks": ("blue_wool", "blue_carpet", "blue_shulker_box", "blue_bed[part=foot]", "blue_stained_glass", "blue_glazed_terracotta", "blue_concrete", "blue_concrete_powder", "blue_candle", "tube_coral_block"), }, { "rgb": (102, 76, 51), "blocks": ("dark_oak_planks", "dark_oak_log[axis=y]", "stripped_dark_oak_log[axis=x]", "dark_oak_wood", "stripped_dark_oak_wood", "dark_oak_sign", "dark_oak_pressure_plate", "dark_oak_trapdoor", "dark_oak_stairs", "dark_oak_slab", "dark_oak_fence_gate", "dark_oak_fence", "dark_oak_door", "spruce_log[axis=x]", "brown_wool", "brown_carpet", "brown_shulker_box", "brown_bed[part=foot]", "brown_stained_glass", "brown_glazed_terracotta", "brown_concrete", "brown_concrete_powder", "brown_candle", "soul_sand", "command_block", "brown_mushroom", "soul_soil"), }, { "rgb": (102, 127, 51), "blocks": ("green_wool", "green_carpet", "green_shulker_box", "green_bed[part=foot]", "green_stained_glass", "green_glazed_terracotta", "green_concrete", "green_concrete_powder", "green_candle", "end_portal_frame", "chain_command_block", "sea_pickle", "moss_carpet", "moss_block", "dried_kelp_block"), }, { "rgb": (153, 51, 51), "blocks": ("red_wool", "red_carpet", "red_shulker_box", "red_bed[part=foot]", "red_stained_glass", "red_glazed_terracotta", "red_concrete", "red_concrete_powder", "red_candle", "brick_slab", "brick_stairs", "brick_wall", "red_mushroom_block", "nether_wart", "enchanting_table", "nether_wart_block", "fire_coral_block", "red_mushroom", "shroomlight"), }, { "rgb": (25, 25, 25), "blocks": ("black_wool", "black_carpet", "black_shulker_box", "black_bed[part=foot]", "black_stained_glass", "black_glazed_terracotta", "black_concrete", "black_concrete_powder", "black_candle", "obsidian", "end_portal", "dragon_egg", "coal_block", "end_gateway", "basalt", "polished_basalt", "smooth_basalt", "netherite_block", "crying_obsidian", "respawn_anchor", "blackstone", "gilded_blackstone"), }, { "rgb": (250, 238, 77), "blocks": ("gold_block", "light_weighted_pressure_plate", "bell", "raw_gold_block"), }, { "rgb": (92, 219, 213), "blocks": ("diamond_block", "beacon", "prismarine_brick_slab", "prismarine_brick_stairs", "dark_prismarine_slab", "dark_prismarine_stairs", "conduit"), }, { "rgb": (74, 128, 255), "blocks": ("lapis_lazuli_block"), }, { "rgb": (0, 217, 58), "blocks": ("emerald_block"), }, { "rgb": (129, 86, 49), "blocks": ("podzol", "spruce_planks", "spruce_log[axis=y]", "stripped_spruce_log[axis=x]", "spruce_wood", "stripped_spruce_wood", "spruce_sign", "spruce_pressure_plate", "spruce_trapdoor", "spruce_stairs", "spruce_slab", "spruce_fence_gate", "spruce_fence", "spruce_door", "oak_log[axis=x]", "jungle_log[axis=x]", "campfire", "soul_campfire"), }, { "rgb": (112, 2, 0), "blocks": ("netherrack", "nether_brick_fence", "nether_brick_slab", "nether_brick_stairs", "nether_brick_wall", "nether_brick_chiseled", "nether_brick_cracked", "nether_gold_ore", "nether_quartz_ore", "magma_block", "red_nether_brick_slab", "red_nether_brick_stairs", "red_nether_brick_wall", "crimson_roots", "crimson_fungus", "weeping_vines"), }, { "rgb": (209, 177, 161), "blocks": ("white_terracotta", "calcite"), }, { "rgb": (159, 82, 36), "blocks": ("orange_terracotta"), }, { "rgb": (149, 87, 108), "blocks": ("magenta_terracotta"), }, { "rgb": (112, 108, 138), "blocks": ("light_blue_terracotta"), }, { "rgb": (186, 133, 36), "blocks": ("yellow_terracotta"), }, { "rgb": (103, 117, 53), "blocks": ("lime_terracotta"), }, { "rgb": (160, 77, 78), "blocks": ("pink_terracotta"), }, { "rgb": (57, 41, 35), "blocks": ("gray_terracotta", "tuff"), }, { "rgb": (135, 107, 98), "blocks": ("light_gray_terracotta", "exposed_copper"), }, { "rgb": (87, 92, 92), "blocks": ("cyan_terracotta"), }, { "rgb": (122, 73, 88), "blocks": ("purple_terracotta", "purple_shulker_box"), }, { "rgb": (76, 62, 92), "blocks": ("blue_terracotta"), }, { "rgb": (76, 50, 35), "blocks": ("brown_terracotta", "pointed_dripstone", "dripstone_block"), }, { "rgb": (76, 82, 42), "blocks": ("green_terracotta"), }, { "rgb": (142, 60, 46), "blocks": ("red_terracotta"), }, { "rgb": (37, 22, 16), "blocks": ("black_terracotta"), }, { "rgb": (189, 48, 49), "blocks": ("crimson_nylium"), }, { "rgb": (148, 63, 97), "blocks": ("crimson_planks", "crimson_log[axis=y]", "stripped_crimson_log[axis=x]", "crimson_wood", "stripped_crimson_wood", "crimson_sign", "crimson_pressure_plate", "crimson_trapdoor", "crimson_stairs", "crimson_slab", "crimson_fence_gate", "crimson_fence", "crimson_door"), }, { "rgb": (92, 25, 29), "blocks": ("crimson_hyphae", "stripped_crimson_hyphae"), }, { "rgb": (22, 126, 134), "blocks": ("warped_nylium", "oxidized_copper"), }, { "rgb": (58, 142, 140), "blocks": ("warped_planks", "warped_log[axis=y]", "stripped_warped_log[axis=x]", "warped_wood", "stripped_warped_wood", "warped_sign", "warped_pressure_plate", "warped_trapdoor", "warped_stairs", "warped_slab", "warped_fence_gate", "warped_fence", "warped_door", "weathered_copper"), }, { "rgb": (86, 44, 62), "blocks": ("warped_hyphae", "stripped_warped_hyphae"), }, { "rgb": (20, 180, 133), "blocks": ("warped_wart_block"), }, { "rgb": (100, 100, 100), "blocks": ("deepslate"), }, { "rgb": (216, 175, 147), "blocks": ("raw_iron_block"), }, { "rgb": (127, 167, 150), "blocks": ("glow_lichen"), }, ] def to_minecraft_color(pxl): color = None min_distance = None for item in blocks: # Calculates the "distance" between two RGB colors as if they # were points in a 3-dimensional space. # The closer they are, the more they look like each other. euclidean_distance = sqrt(sum([pow(p - c, 2) for p, c in zip(item["rgb"], pxl)])) if min_distance is None or euclidean_distance < min_distance: min_distance = euclidean_distance color = ", ".join("minecraft:"+block for block in item["blocks"]) return color # Resizing the image and mapping each pixel's color to a minecraft color image = image.resize( (image.size[0] // lower_image_size_by, image.size[1] // lower_image_size_by) ) image_colors_processed = [ [to_minecraft_color(pixel) for pixel in row] for row in np.array(image) ] # Getting the name that the image should have via the given path image_name = os.path.splitext(os.path.split(path)[1])[0] df = pd.DataFrame(image_colors_processed) # Creates - in an error proof manner - the folder structure of the datapack with suppress(FileExistsError): os.makedirs(f"{path}/data/minecraft/tags/functions") os.makedirs(f"{path}/data/pixelart-map/functions") if minecraft_version >= '1.13.0': if minecraft_version >= '1.13.0' and minecraft_version <= '1.14.4': datapack_version = 4 elif minecraft_version >= '1.15.0' & minecraft_version <= '1.16.1': datapack_version = 5 elif minecraft_version >= '1.16.2' & minecraft_version <= '1.16.5': datapack_version = 6 elif minecraft_version >= '1.17.0' & minecraft_version <= '1.17.1': datapack_version = 7 elif minecraft_version >= '1.18.0' & minecraft_version <= '1.18.1': datapack_version = 8 elif minecraft_version >= '1.18.2': datapack_version = 9 else: datapack_version = 4 raise ValueError("This versions is incompatible with datapacks (below 1.13.0) or the version is writen wrong (correct: x.xx.x | wrong: x.x, x.xx)") pack_mcmeta = { "pack": { "pack_format": datapack_version, "description": f"This datapack will generate the image ({image_name}) in your world", } } load_json = {"values": ["pixelart-map:load"]} tick_json = {"values": ["pixelart-map:tick"]} with open(f"{path}/pack.mcmeta", "w") as file: file.write(json.dumps(pack_mcmeta, indent=4)) with open(f"{path}/data/minecraft/tags/functions/load.json", "w") as file: file.write(json.dumps(load_json, indent=4)) with open(f"{path}/data/minecraft/tags/functions/tick.json", "w") as file: file.write(json.dumps(tick_json, indent=4)) with open(f"{path}/data/pixelart-map/functions/tick.mcfunction", "w") as file: file.write("") # Making the commands that when ran will build the image's pixel art. # This part's had a huge contribution from this thread: https://stackoverflow.com/questions/70512775/how-to-group-elements-in-dataframe-by-row/70546452#70546452 df = df.rename_axis(index="z", columns="x") a = list( script( df, player_x=player_pos[0], player_y=player_pos[1], player_z=player_pos[2], ) ) b = list( script( df.T, player_x=player_pos[0], player_y=player_pos[1], player_z=player_pos[2], ) ) res = min([a, b], key=len) with open(f"{path}/data/pixelart-map/functions/load.mcfunction", "w") as file: file.write("\n".join(res))
Henrique-CSS/unexpected-isaves
src/unexpected_isaves/save_image.py
save_image.py
py
24,926
python
en
code
null
github-code
6
19167044996
""" A collection of neural network code. The first part of the script includes blocks, which are the building blocks of our models. The second part includes the actual Pytorch models. """ import torch import torchvision.transforms as transforms class ConvBlock(torch.nn.Module): """ A ConvBlock represents a convolution. It's not just a convolution however, as some common operations (dropout, activation, batchnorm, 2x2 pooling) can be set and run in the order mentioned. """ def __init__( self, dim, n_out, kernel_size=3, stride=1, padding=1, batchnorm=False, dropout=0, activation=True, ): """ A convolution operation """ super(ConvBlock, self).__init__() n_in = int(dim[0]) self.conv2d = torch.nn.Conv2d( n_in, n_out, kernel_size=kernel_size, stride=stride, padding=padding ) self.batchnorm = torch.nn.BatchNorm2d(n_out) if batchnorm else None self.activation = torch.nn.ReLU(inplace=True) if activation else None self.dropout = torch.nn.Dropout2d(dropout) if dropout else None dim[0] = n_out dim[1:] = 1 + (dim[1:] + padding * 2 - kernel_size) // stride self.n_params = n_out * (n_in * kernel_size * kernel_size + (3 if batchnorm else 1)) print( "Conv2d in %4i out %4i h %4i w %4i k %i s %i params %9i" % (n_in, *dim, kernel_size, stride, self.n_params) ) def forward(self, batch): """ Forward the 4D batch """ out = self.conv2d(batch) if self.activation: out = self.activation(out) if self.batchnorm: out = self.batchnorm(out) if self.dropout: out = self.dropout(out) return out class LinearBlock(torch.nn.Module): """ A LinearBlock represents a fully connected layer. It's not just this, as some common operations (dropout, activation, batchnorm) can be set and run in the order mentioned. """ def __init__(self, dim, n_out, batchnorm=False, dropout=0.0, activation=True): """ A fully connected operation """ super(LinearBlock, self).__init__() n_in = int(dim[0]) self.linear = torch.nn.Linear(n_in, n_out) dim[0] = n_out if type(n_out) in (int, float) else n_out[0] self.batchnorm = torch.nn.BatchNorm1d(dim[0]) if batchnorm else None self.dropout = torch.nn.Dropout(dropout) if dropout > 0.0 else None self.activation = torch.nn.ReLU(inplace=True) if activation else None self.n_params = n_out * (n_in + (3 if batchnorm else 1)) print( "Linear in %4i out %4i params %9i" % (n_in, n_out, self.n_params) ) def forward(self, batch): """ Forward the 2D batch """ out = self.linear(batch) if self.activation: out = self.activation(out) if self.batchnorm: out = self.batchnorm(out) if self.dropout: out = self.dropout(out) return out class PoolBlock(torch.nn.Module): """ A PoolBlock is a pooling operation that happens on a matrix, often between convolutional layers, on each channel individually. By default only two are supported: max and avg. """ def __init__(self, dim, pool="max", size=None, stride=None): """ A pooling operation """ super(PoolBlock, self).__init__() stride = size if stride is None else stride if size: dim[1:] //= stride else: size = [int(x) for x in dim[1:]] dim[1:] = 1 if pool == "max": self.pool = torch.nn.MaxPool2d(size, stride=stride, padding=0) elif pool == "avg": self.pool = torch.nn.AvgPool2d(size, stride=stride, padding=0) self.n_params = 0 def forward(self, batch): """ Forward the 4D batch """ out = self.pool(batch) return out class ViewBlock(torch.nn.Module): """ A ViewBlock restructures the shape of our activation maps so they're represented as 1D instead of 3D. """ def __init__(self, dim, shape=-1): """ A reshape operation """ super(ViewBlock, self).__init__() self.shape = shape if self.shape == -1: dim[0] = dim[0] * dim[1] * dim[2] dim[-2] = 0 dim[-1] = 0 else: dim[:] = shape self.n_params = 0 print("View d %4i h %4i w %4i" % (*dim,)) def forward(self, batch): """ Forward the 4D batch into a 2D batch """ return batch.view(batch.size(0), self.shape) class Tiny(torch.nn.Module): """ A small and quick model """ def __init__(self, in_dim, n_status, n_out): """ Args: in_dim (list): The input size of each example n_status (int): Number of status inputs to add n_out (int): Number of values to predict """ super(Tiny, self).__init__() self.n_status = n_status dim = in_dim.copy() self.feat = torch.nn.Sequential( ConvBlock(dim, 16), PoolBlock(dim, "max", 2), ConvBlock(dim, 32), PoolBlock(dim, "max", 2), ConvBlock(dim, 48), PoolBlock(dim, "max", 2), ConvBlock(dim, 64), PoolBlock(dim, "max", 2), ) self.view = ViewBlock(dim) dim[0] += n_status self.head = torch.nn.Sequential(LinearBlock(dim, n_out, activation=False)) self.n_params = sum([x.n_params for x in self.feat]) + sum([x.n_params for x in self.head]) print("Tiny params %9i" % self.n_params) def forward(self, batch, status): """ Args: batch (4D tensor): A batch of camera input. status (1D tensor): Status inputs indicating things like speed. """ out = self.feat(batch) out = self.view(out) if self.n_status: out = torch.cat((out, status), 1) out = self.head(out) return out class StarTree(torch.nn.Module): """ A medium-sized model that uses layers with few activation maps to efficiently increase the number of layers, and therefore nonlinearities. """ def __init__(self, in_dim, n_status, n_out): """ Args: in_dim (list): The input size of each example n_status (int): Number of status inputs to add n_out (int): Number of values to predict """ super(StarTree, self).__init__() self.n_status = n_status dim = in_dim.copy() self.feat = torch.nn.Sequential( ConvBlock(dim, 64, dropout=0.25), ConvBlock(dim, 16), ConvBlock(dim, 32), PoolBlock(dim, "max", 2), ConvBlock(dim, 24), ConvBlock(dim, 48), PoolBlock(dim, "max", 2), ConvBlock(dim, 32), ConvBlock(dim, 64), PoolBlock(dim, "max", 2), ConvBlock(dim, 40), ConvBlock(dim, 80, dropout=0.25), PoolBlock(dim, "max", 2), ) self.view = ViewBlock(dim) dim[0] += n_status self.head = torch.nn.Sequential( LinearBlock(dim, 50), LinearBlock(dim, n_out, activation=False), ) self.n_params = sum([x.n_params for x in self.feat]) + sum([x.n_params for x in self.head]) print("StarTree params %9i" % self.n_params) def forward(self, batch, status): """ Args: batch (4D tensor): A batch of camera input. status (1D tensor): Status inputs indicating things like speed. """ out = self.feat(batch) out = self.view(out) if self.n_status: out = torch.cat((out, status), 1) out = self.head(out) return out def train_epoch(device, model, optimizer, criterion, loader): """ Run the optimzer over all batches in an epoch """ model.train() epoch_loss = 0 batch_index = 0 for batch_index, (examples, statuses, labels) in enumerate(loader): optimizer.zero_grad() guesses = model(examples.to(device), statuses.to(device)) loss = criterion(guesses, labels.to(device)) loss.backward() optimizer.step() epoch_loss += loss.item() return epoch_loss / (batch_index + 1) def test_epoch(device, model, criterion, loader): """ Run the evaluator over all batches in an epoch """ model.eval() epoch_loss = 0 batch_index = 0 with torch.no_grad(): for batch_index, (examples, statuses, labels) in enumerate(loader): guesses = model(examples.to(device), statuses.to(device)) loss = criterion(guesses, labels.to(device)) epoch_loss += loss.item() return epoch_loss / (batch_index + 1) def compose_transforms(transform_config): """ Apply all image transforms """ transform_list = [] for perturb_config in transform_config: if perturb_config["name"] == "colorjitter": transform = transforms.ColorJitter( brightness=perturb_config["brightness"], contrast=perturb_config["contrast"], saturation=perturb_config["saturation"], hue=perturb_config["hue"], ) transform_list.append(transform) transform_list.append(transforms.ToTensor()) return transforms.Compose(transform_list)
notkarol/derplearning
derp/model.py
model.py
py
9,661
python
en
code
40
github-code
6
26096479620
from typing import final import pandas as pd import numpy as np import os final_df=pd.read_csv("prepared_final_data.csv") print(final_df) values=final_df["pollution"].values print(values) print(final_df.columns) """# Normalized the data""" from sklearn.preprocessing import MinMaxScaler # values = final_df.values print(values) scaler = MinMaxScaler(feature_range=(0, 1)) scaled_dataset = scaler.fit_transform(values.reshape(-1,1)) scaled_dataset # Creating a window for previous data def to_supervised(window_size,train): X = [] Y = [] for i in range(window_size, len(train)): X.append(train[i-window_size:i,:]) Y.append(train[i,0:1]) return np.array(X), np.array(Y) feature,label = to_supervised(window_size=5, train=scaled_dataset) n_train = 24*365 X_train, X_test = feature[n_train:,] , feature[:n_train,] print('X_train' ,X_train.shape) print('X_test' ,X_test.shape) Y_train, Y_test = label[n_train:,] , label[:n_train,] print('Y_train' ,Y_train.shape) print('Y_test' ,Y_test.shape) import keras from keras.models import Sequential from keras.layers import Dense, Dropout,LSTM model = Sequential() model.add(LSTM(units = 50, return_sequences = True, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dropout(0.2)) model.add(LSTM(units = 50, return_sequences = True)) model.add(Dropout(0.2)) model.add(LSTM(units = 50)) model.add(Dropout(0.2)) model.add(Dense(units = 1)) model.compile(optimizer = 'adam', loss = 'mean_squared_error') from keras.callbacks import EarlyStopping es_callback = EarlyStopping(monitor='val_loss', patience=3,min_delta=0.01) path = 'air_pollution_forecasting_model' isdir = os.path.isdir(path) print(isdir) if isdir: reconstructed_model = keras.models.load_model("air_pollution_forecasting_model") model = reconstructed_model else: model.fit(X_train, Y_train, validation_split = 0.1, epochs = 10, batch_size = 32, callbacks=[es_callback]) model.save("air_pollution_forecasting_model") breakpoint() Y_pred = np.round(model.predict(X_test),2) from sklearn.metrics import mean_squared_error mse = mean_squared_error(Y_test, Y_pred) rmse = np.sqrt(mse) print(rmse) # Scaling back to the original scale d = scaled_dataset[:8760,:] print('dummy',d.shape) print('Y_pred',Y_pred.shape) Y_predicted = np.concatenate((Y_pred,d[:8760,1:]), axis =1) print('concat y_pred',Y_pred.shape) Y_tested = np.concatenate((Y_test, d[:8760,1:]), axis = 1) print('concat Y_test', Y_test.shape) Y_predicted = scaler.inverse_transform(Y_predicted) Y_tested = scaler.inverse_transform(Y_tested) Y_predicted = Y_predicted[:,0:1] Y_tested = Y_tested[:,0:1] print('Y_tested', Y_tested.shape) print('Y_predicted', Y_predicted.shape) import matplotlib.pyplot as plt plt.plot(Y_predicted[:100,:], color= 'green') plt.plot(Y_tested[:100,:] , color = 'red') plt.title("Air Pollution Prediction (Multivariate)") plt.xlabel("Date") plt.ylabel("Pollution level") plt.savefig("results.png") import pickle pickle.dump(scaler, open('min_max_scaler.pkl','wb'))
manisha841/Air-Quality-Index-Prediction
train.py
train.py
py
3,028
python
en
code
0
github-code
6
32311173285
#import networkx as nx #import matplotlib.pyplot as plt import json import pprint from TwitterModule import * import time from datetime import datetime #Set up api and global variables twitter_api = oauth_login()#twitter api for grabbing data #dates = [330,331,401,402,403] dates = [401,402,403,404,405,406,407] for day in dates: print(day) names = ['@itsnotdrew','@davidhogg111','@IngrahamAngle','@sleepnumber','@ATT','@Allstate','@esurance','@Bayer','@RocketMortgage','@LibertyMutual','@Arbys','@TripAdvisor','@Nestle','@hulu','@Wayfair','@FoxNews','#BoycottIngramAdverts','#boycottLauraIngraham','#FireIngraham','#FireLauraIngraham'] errorLogName = 'errorLog' + str(day) + '_4' + '.txt' errorLog = open(errorLogName,'w') for q in names: try: dateStr = str(day) dateDay = dateStr[1:] dateDayPlusOne = str(int(dateDay)+1) dateMonth = dateStr[0] if (dateStr == '331'): #dirty code to fix a logic bug when switching months dateDayPlusOne = '01' dateMonth = '4' until = '2018-0' + dateMonth + '-' + dateDayPlusOne tweetsDicitonary = {} name = q[1:] nameFile = name + dateStr +'_4'+ '.json' file = open(nameFile,'w') ''' First search call to twitter_api Parameters: q: is the search term result_type: is whether we want recent, popular or mixed tweets. Currently set to recent max_results: is how many results we wan to take in a single call. Is currently 10 for testing until: specifies the date that all tweets returned form this call should come before (so all tweets from this call are from 3/28/2018) getMaxID parses the maxID from the appropriate string in the search return metadata maxid will then be used to call the next batch of tweets. More info on maxid is Available on the search api documentation ''' print(q + 'at ' + str(datetime.now())) #prints twitter user being processed response = make_twitter_request(twitter_api.search.tweets,q=q,result_type='recent',count=5, until=until) try: next_results = response['search_metadata']['next_results'] getMaxID = dict([ kv.split('=') for kv in next_results[1:].split("&") ]) maxid = getMaxID['max_id'] except: next_results = "" maxid = 0 line = "\nretrieval error at " + str(datetime.now()) + " while processing beginning call of " + q errorLog.write(line) ''' Parameters in response: most are the same -result_type is mixed (testing) -max_results is 100 (testing, but really it should be kept like this) -max_id field is at the end of the call, allowing each call of the function to retrieve older and older tweets time.sleep(5): Can only call the search api 180 times in 15 minutes, so ~5 seconds. Right now set to one because testing, but should probably be set to 10self. Or, we can edit the make-twitter_request function to handle this error for us ''' for i in range(1,101): #top possible tweets 10,000 #print(i) #testing code try: response = make_twitter_request(twitter_api.search.tweets,q=q,result_type='recent',count=100,until=until,max_id=maxid) next_results = response['search_metadata']['next_results'] if (next_results == None): break getMaxID = dict([ kv.split('=') for kv in next_results[1:].split("&") ])#to get the nextID maxid = getMaxID['max_id'] # print(maxid) time.sleep(5) except: line = "\nretrieval error at " + str(datetime.now()) + " while processing " + q + ' at loop number ' + str(i) errorLog.write(line) break for tweet in response['statuses']:#add each tweet to a dictionary try: tweetsDicitonary[tweet['id']] = tweet except: line = "\ndicitonary error at " + str(datetime.now()) + " while processing " + str(tweet['id']) errorLog.write(line) file.seek(0) file.seek(0) json.dump(tweetsDicitonary,file) file.close() except: line = "\nFatal error at " + str(datetime.now()) + " while processing " + q errorLog.write(line) json.dump(tweetsDicitonary,file) file.close()
drewpj/cis400tweetfrequency
searchTweets.py
searchTweets.py
py
4,925
python
en
code
1
github-code
6
71477060028
import sys input = sys.stdin.readline def BFS(y, x, word): global ans ans = max(ans, len(word)) for dy, dx in ((0, 1), (0, -1), (1, 0), (-1, 0)): ny = y + dy nx = x + dx if 0 <= ny < R and 0 <= nx < C and data[ny][nx] not in word: BFS(ny, nx, word+data[ny][nx]) R, C = map(int, input().split()) ans = 0 data = [input().rstrip() for _ in range(R)] # print(data) # BFS(0, 0, data[0][0]) print(ans)
YOONJAHYUN/Python
BOJ/1987_2.py
1987_2.py
py
451
python
en
code
2
github-code
6
40709996191
# coding=utf-8 from __future__ import absolute_import, division, print_function import torch import torch.nn as nn from torch.utils.data import DataLoader, Dataset from util.custom_dataset import FaceLandmarksDataset, Rescale, ToTensor import torchvision.models as models from torchvision import transforms import torch.nn.functional as F import numpy as np import matplotlib.pyplot as plt from torchvision import transforms, utils import torchvision class View(nn.Module): def __init__(self, shape): super(View, self).__init__() self.shape = shape def forward(self, x): return x.view(*self.shape) class InnerSum(nn.Module): def __init__(self): super(InnerSum, self).__init__() def forward(self, x): y = torch.zeros_like(x) for i in range(x.size(0)): y[i] = x[i].mul(x[i]) if len(y.shape) == 3: return y.sum(2) else: return y.sum(1) class ACNN(nn.Module): def __init__(self): super(ACNN, self).__init__() self.inner = InnerSum() self.pretrain = models.vgg16(pretrained=True).features[:28] self.VGG16 = self.pretrain[:21] self.PG_base = nn.Sequential(nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(), nn.Conv2d(512, 512, kernel_size=3, padding=1), nn.BatchNorm2d(512), nn.ReLU(),) self.PG_attention = nn.Sequential(nn.MaxPool2d(2, stride=2), nn.Conv2d(512, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), View((-1, 128)), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid()) self.GG_base = self.pretrain[21:] self.GG_attention = nn.Sequential(nn.MaxPool2d(2, stride=2), nn.Conv2d(512, 128, kernel_size=3, padding=1), nn.BatchNorm2d(128), nn.ReLU(), nn.AdaptiveAvgPool2d((1, 1)), View((-1, 128)), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 1), nn.Sigmoid()) self.PG24_base = nn.ModuleList([self.PG_base for _ in range(24)]) self.PG24_alpha = nn.ModuleList([self.PG_attention for _ in range(24)]) self.pad = nn.ReflectionPad2d(6) # self.crop = batch_slice(40, 40, 6, 6) self.crop = torchvision.ops.roi_pool self.PG_fc = nn.Linear(512*6*6, 64) self.GG_fc = nn.Linear(512*14*14, 512) self.fc1 = nn.Linear(2048, 1024) self.dropout = nn.Dropout(0.5) self.fc2 = nn.Linear(1024, 7) # def crop_layer(self, img: '(B, C, H, W)', landmarks: '(B, 24, 2)'): # # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # pad = nn.ReflectionPad2d(6) # padding for cropping # img = pad(img) # (B, 512, 36, 36) # total_crop = torch.zeros((img.size(0), landmarks.size(1), 512, 6, 6), device=self.device) # # for i in range(landmarks.size(0)): # Batch # # crop_per_batch = [] # for patch in range(landmarks.size(1)): # 24 landmarks # total_crop[i, patch, :, :, :] = img[i, :, (int(landmarks[i, patch, 0]) - 3): (int( # landmarks[i, patch, 0]) + 3), # (int(landmarks[i, patch, 1]) - 3): (int( # landmarks[i, patch, 1]) + 3)] # crop_img: (512, 6, 6) # # total_crop = total_crop.permute(1, 0, 2, 3, 4) # output: (24, B, 512, 6, 6) # return total_crop def _branch24(self, crop_img): PG_out = [] for x, base, alpha in zip(crop_img, self.PG24_base, self.PG24_alpha): PG_conv2 = base(x) PG_reshape = PG_conv2.view(-1, 512*6*6) PG_reshape = self.PG_fc(PG_reshape) PG_per = PG_reshape * alpha(PG_conv2).view(x.size(0), 1) PG_out.append(PG_per) return PG_out def forward(self, img, landmarks): img_feature = self.VGG16(img) # (B, 512, 28, 28) img_pad = self.pad(img_feature) # landmarks = landmarks.long() crop_img = self.crop(img_pad, landmarks, output_size=(6, 6)) crop_img = crop_img.view(24, -1, 512, 6, 6) GG_conv2 = self.GG_base(img_feature) GG_reshape = GG_conv2.view(-1, 512*14*14) GG_reshape = self.GG_fc(GG_reshape) GG_out = GG_reshape * self.GG_attention(GG_conv2).view(img_feature.size(0), 1) # crop_img = self.crop_layer(img_feature, landmarks) PG_out = self._branch24(crop_img) PG_total = torch.cat(PG_out, dim=1) total_out = torch.cat([GG_out, PG_total], dim=1) out = self.fc1(total_out) out = F.relu(self.dropout(out)) out = self.fc2(out) return out def landmark_resize(landmarks:'(B, 24, 2)')->'(B*24, 4)': bs = landmarks.size(0) batch = list(range(bs)) batch = np.array(batch * 24).reshape(24, -1).T point = np.array(list(range(24)) * bs).reshape(bs, -1) insert_point = np.insert(landmarks, 0, point, 2) insert_batch = np.insert(insert_point, 0, batch, 2) new_landmark = insert_batch.reshape(-1, 4) return new_landmark def data_normal(origin_data, size): # (-1, 1) size = size / 2 norm_data = origin_data.true_divide(size) - 1 return norm_data def grid_field(landmarks, cropsize=6): # landmarks: (B, 24, 2) total_crop = [] landmarks = landmark_resize(landmarks) # (B*24, 4) lm_batch = landmarks[:, 0].long() landmarks_x_l = landmarks[:, 2] - (cropsize / 2) landmarks_x_r = landmarks[:, 2] + (cropsize / 2) landmarks_y_l = landmarks[:, 3] - (cropsize / 2) landmarks_y_r = landmarks[:, 3] + (cropsize / 2) for i in range(landmarks.size(0)): new_h = torch.linspace(landmarks_x_l[i], landmarks_x_r[i] - 1, cropsize).view(-1, 1).repeat(1, cropsize) new_w = torch.linspace(landmarks_y_l[i], landmarks_y_r[i] - 1, cropsize).repeat(cropsize, 1) grid = torch.cat((new_w.unsqueeze(2), new_h.unsqueeze(2)), dim=2) grid = grid.unsqueeze(0) grid = data_normal(grid, size=28) total_crop.append(grid) total_crop = torch.cat(total_crop, dim=0) return lm_batch, total_crop def roi_select(landmarks: '(B, 4, 2)') -> '(B*24, 5)': landmarks = landmark_resize(landmarks) landmarks_right = landmarks[:, 2:] + 3 landmarks_left = landmarks[:, 2:] - 3 landmarks = torch.cat([landmarks[:, 0].view(-1, 1), landmarks_left, landmarks_right], dim=1) return landmarks # if __name__ == '__main__': # model = ACNN() # shuffle = False # device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu") # model.to(device) # train_set = FaceLandmarksDataset(csv_file='train_acnn.csv', root_dir='original/', # transform=ToTensor()) # test_set = FaceLandmarksDataset(csv_file='test_acnn.csv', root_dir='original/', # transform=ToTensor()) # train_loader = DataLoader(dataset=train_set, shuffle=shuffle, batch_size=4, num_workers=0, # pin_memory=True) # test_loader = DataLoader(dataset=test_set, shuffle=shuffle, batch_size=4, num_workers=8, # pin_memory=True) # for step, batch in enumerate(train_loader): # imgs, landmarks, targets = batch['image'], batch['landmarks'] / 8. + 6, batch['label'] # landmarks = roi_select(landmarks) # # imgs, landmarks, targets = imgs.to(device), landmarks.to(device), targets.to(device) # logits = model(imgs, landmarks) # print(logits.size()) # break
hanluyt/gACNN_pytorch
model_roi.py
model_roi.py
py
7,947
python
en
code
2
github-code
6
1002077560
import g2d from boardgame import BoardGame from time import time W, H = 40, 40 LONG_PRESS = 0.5 class BoardGameGui: def __init__(self, g: BoardGame): self._game = g self._downtime = 0 self.update_buttons() def tick(self): if g2d.key_pressed("LeftButton"): self._downtime = time() elif g2d.key_pressed("a"): self._game.automatism() self.update_buttons() elif g2d.key_pressed("h"): self._game.hint() self.update_buttons() elif g2d.key_pressed("u"): print(self._game.unsolvable()) elif g2d.key_released("LeftButton"): mouse = g2d.mouse_position() x, y = mouse[0] // W, mouse[1] // H if time() - self._downtime > LONG_PRESS: self._game.flag_at(x, y) else: self._game.play_at(x, y) self.update_buttons() def update_buttons(self): g2d.clear_canvas() g2d.set_color((0, 0, 0)) cols, rows = self._game.cols(), self._game.rows() for y in range(1, rows): g2d.draw_line((0, y * H), (cols * W, y * H)) for x in range(1, cols): g2d.draw_line((x * W, 0), (x * W, rows * H)) for y in range(rows): for x in range(cols): value = self._game.value_at(x, y) if value == '1': #Settaggio colori g2d.set_color((200,200,200)) g2d.fill_rect((x*40, y*40, 39, 39)) elif value == '2': g2d.set_color((0,0,0)) g2d.fill_rect((x*40, y*40, 39, 39)) center = x * W + W//2, y * H + H//2 g2d.draw_text_centered(value, center, H//2) g2d.update_canvas() if self._game.finished(): g2d.alert(self._game.message()) g2d.close_canvas() def gui_play(game: BoardGame): g2d.init_canvas((game.cols() * W, game.rows() * H)) ui = BoardGameGui(game) g2d.main_loop(ui.tick)
refedico/3-in-a-Row
boardgamegui.py
boardgamegui.py
py
2,063
python
en
code
3
github-code
6
36562134507
import sys import json import time import numpy as np import argparse from operator import itemgetter from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from math import sqrt from math import log from upper_learning_corpus import LearningCorpus from sparse_matrix import * from ranking import * def convert_counts_to_pmi2(matrix, rowSum, colSum): totalSum = sum(rowSum.values()) sys.stderr.write('Converting to csc_matrix format... ') startTime = time.time() matrix = coo_matrix(matrix) sys.stderr.write('done. Time taken: '+str(time.time()-startTime)+' secs\n') totalEntries = len(matrix.row) sys.stderr.write('Num entries: '+str(totalEntries)+'\n') numEntries = 1. # symmetric matrix for r, c, val in zip(np.nditer(matrix.row), np.nditer(matrix.col), np.nditer(matrix.data, op_flags=['readwrite'])): pi, pj, pij = (1.*val/rowSum[str(r)], 1.*val/colSum[str(c)], 1.*val/totalSum) val[...] = log(pij/(pi*pj)) if numEntries% 1000000 == 0: sys.stderr.write(str(numEntries)+' ') numEntries += 1 sys.stderr.write('done!\n') return csc_matrix((matrix.data, (matrix.row, matrix.col)), shape=matrix.shape) def convert_counts_to_pmi(matrix, rowSum, colSum): totalSum = sum(rowSum.values()) sys.stderr.write('Converting to dok_matrix format... ') startTime = time.time() matrix = dok_matrix(matrix) sys.stderr.write('done. Time taken: '+str(time.time()-startTime)+' secs\n') totalEntries = len(matrix) sys.stderr.write('Num entries: '+str(totalEntries)+'\n') r, c = matrix.shape numEntries = 1. # symmetric matrix if r == c: for key, val in matrix.iteritems(): i, j = key i, j = (str(i), str(j)) if int(i) <= int(j): pi, pj, pij = (1.*val/rowSum[i], 1.*val/colSum[j], 1.*val/totalSum) pmi = log(pij/(pi*pj)) matrix[int(i), int(j)] = pmi matrix[int(j), int(i)] = pmi else: pass if numEntries% 1000000 == 0: sys.stderr.write(str(numEntries)+' ') numEntries += 1 else: for key, val in matrix.iteritems(): i, j = key i, j = (str(i), str(j)) pi, pj, pij = (1.*val/rowSum[i], 1.*val/colSum[j], 1.*val/totalSum) matrix[int(i), int(j)] = log(pij/(pi*pj)) if numEntries% 1000000 == 0: sys.stderr.write(str(numEntries)+' ') numEntries += 1 sys.stderr.write('done!\n') return csc_matrix(matrix) if __name__=='__main__': parser = argparse.ArgumentParser() parser.add_argument("-m", "--matrixfile", type=str, default=None, help="Matrix file name") parser.add_argument("-d", "--dictfile", type=str, help="Dictionary file name") parser.add_argument("-o", "--outputfile", type=str, default=None, help="Output file name") args = parser.parse_args() outFileName = args.outputfile dictFile = open(args.dictfile, 'r') values = dictFile.readline().strip().split() if len(values) == 3: colCutoff, rowCutoff, windowSize = values else: colCutoff, windowSize = values rowCutoff = 0. vocab = json.loads(dictFile.readline()) wordFeatures = json.loads(dictFile.readline()) rowSum = json.loads(dictFile.readline()) colSum = json.loads(dictFile.readline()) contextMat = load_sparse_matrix(args.matrixfile) sys.stderr.write("windowSize: "+str(windowSize)+" colCutoff: "+str(colCutoff)+" rowCutoff: "+str(rowCutoff)+'\n') sys.stderr.write("featLen: "+str(len(wordFeatures))+" vocabLen: "+str(len(vocab))+'\n') sys.stderr.write('Read the matrix!\n') ''' Convert the matrix here! ''' contextMat = convert_counts_to_pmi(contextMat, rowSum, colSum) sys.stderr.write('Writing the matrix now... ') if outFileName is None: outFileName = args.dictfile.replace('.dict', '_pmi') save_sparse_matrix(outFileName, contextMat) sys.stderr.write('done!\n')
mfaruqui/vector-semantics
src/svd/convert_counts_to_pmi.py
convert_counts_to_pmi.py
py
4,114
python
en
code
5
github-code
6
25026171656
from flask import abort from flask_restx import Resource, Namespace, Model, fields, reqparse from infraestructura.alumnos_repo import AlumnosRepo from api.cursos_api import modeloCurso from flask_restx.inputs import date repo = AlumnosRepo() nsAlumno = Namespace('Alumnos', description='Administrador de Alumno') modeloAlumnoSinID = Model('AlumnoSinID',{ 'nombre': fields.String(), 'direccion': fields.String(), 'sexo':fields.String(), 'edad':fields.Integer(), 'fecha_baja': fields.Date() }) modeloAlumno = modeloAlumnoSinID.clone('Alumno',{ 'id': fields.Integer(), #'cursos': fields.Nested(modeloCurso, skip_none=True) }) # modeloBusqueda = Model('BusquedaFechas', { # 'desde': fields.Date(), # 'hasta': fields.Date() # }) nsAlumno.models[modeloAlumno.name] = modeloAlumno nsAlumno.models[modeloAlumnoSinID.name] = modeloAlumnoSinID # nsAlumno.models[modeloBusqueda.name] = modeloBusqueda nuevoAlumnoParser = reqparse.RequestParser(bundle_errors=True) nuevoAlumnoParser.add_argument('nombre', type=str, required=True) nuevoAlumnoParser.add_argument('direccion', type=str, required=True) nuevoAlumnoParser.add_argument('sexo', type=str, required=True) nuevoAlumnoParser.add_argument('edad', type=int, required=True) nuevoAlumnoParser.add_argument('fecha_baja', type=date, required=False) editarAlumnoParser = nuevoAlumnoParser.copy() editarAlumnoParser.add_argument('id', type=int, required=True) @nsAlumno.route('/') class AlumnosResource(Resource): # @nsAlumno.marshal_list_with(modeloAlumno) # def get(self): # return repo.get_all() @nsAlumno.marshal_list_with(modeloAlumno) def get(self): return repo.get_all() @nsAlumno.expect(modeloAlumnoSinID) @nsAlumno.marshal_with(modeloAlumno) def post(self): data = nuevoAlumnoParser.parse_args() Alumno = repo.agregar(data) if Alumno: return Alumno, 201 abort(500) @nsAlumno.route('/<int:id>') class AlumnoResource(Resource): @nsAlumno.marshal_with(modeloAlumno) def get(self, id): Alumno = repo.get_by_id(id) if Alumno: return Alumno, 200 abort(404) @nsAlumno.expect(modeloAlumno) def put(self, id): data = editarAlumnoParser.parse_args() if repo.modificar(id, data): return 'Alumno actualizado', 200 abort(404) # @nsAlumno.route('/buscar/<string:desde>/<string:hasta>/') # class AlumnoResource(Resource): # @nsAlumno.marshal_list_with(modeloAlumno) # def get(self, desde, hasta): # l = repoLep.buscar(desde, hasta) # if l: # a = [] # for x in l: # h = repo.get_by_id(x.Alumno_id) # a.append(h) # return l, 200 # abort(404) @nsAlumno.route('/baja/<int:id>') class AlumnoResource(Resource): def put(self, id): if repo.baja(id): return 'Alumno dado de baja', 200 abort(400) @nsAlumno.route('/buscar/<int:curso>') class AlumnoResource(Resource): @nsAlumno.marshal_list_with(modeloAlumno) def get(self, curso): l = repo.get_alumno_curso(curso) if l: return l, 200 abort(404)
PepoPalo/Final-Laboratorio-Diciembre2021
Backend/api/alumnos_api.py
alumnos_api.py
py
3,258
python
es
code
1
github-code
6
32144899005
import pandas as pd def read_fasta(file_path): sequences = {"Header": [], "Sequence": []} current_header = None current_sequence = "" with open(file_path, "r") as file: for line in file: line = line.strip() if line.startswith(">"): # New header found if current_header is not None: sequences["Header"].append(current_header) sequences["Sequence"].append(current_sequence) current_header = line[1:] current_sequence = "" else: # Continue building the sequence current_sequence += line # Add the last sequence if current_header is not None: sequences["Header"].append(current_header) sequences["Sequence"].append(current_sequence) return pd.DataFrame(sequences) def extract_label(header): # Extract label after the "|" symbol parts = header.split("|") if len(parts) > 1: return parts[1].strip() else: return None file_path = "data/pharos/pharos.fasta" fasta_df = read_fasta(file_path) fasta_df["Label"] = fasta_df["Header"].apply(extract_label) tclin_df = fasta_df[fasta_df["Label"] == "Tclin"] tdark_df = fasta_df[fasta_df["Label"] == "Tdark"] length_tclin_df = len(tclin_df) random_tdark_df = tdark_df.sample(n=length_tclin_df, random_state=42) from sklearn.model_selection import train_test_split import os # Assuming tclin_df and tdark_df are already defined # Define the test size test_size = 0.2 # Split the positive sequences (Tclin) into train and test sets tclin_train, tclin_test = train_test_split( tclin_df, test_size=test_size, random_state=42 ) # Split the negative sequences (Tdark) into train and test sets tdark_train, tdark_test = train_test_split( random_tdark_df, test_size=test_size, random_state=42 ) # Create folders if they don't exist train_folder = "data/pharos/fastadata/Train" test_folder = "data/pharos/fastadata/Independent_Test" # Create folders if they don't exist for folder in [train_folder, test_folder]: if not os.path.exists(folder): os.makedirs(folder) if not os.path.exists(train_folder): os.makedirs(train_folder) if not os.path.exists(test_folder): os.makedirs(test_folder) # Function to extract header before the '|' symbol def extract_header(identifier): return identifier.split("|")[0] # Function to write sequences to fasta file def write_fasta(filename, dataframe): with open(filename, "w") as file: for index, row in dataframe.iterrows(): header = extract_header(row["Header"]) file.write(f">{header}\n{row['Sequence']}\n") # Save the sequences to FASTA files in the train and test folders write_fasta(os.path.join(train_folder, "positive_train_sequence.fasta"), tclin_train) write_fasta(os.path.join(test_folder, "positive_test_sequence.fasta"), tclin_test) write_fasta(os.path.join(train_folder, "negative_train_sequence.fasta"), tdark_train) write_fasta(os.path.join(test_folder, "negative_test_sequence.fasta"), tdark_test)
txz32102/paper
util/sample.py
sample.py
py
3,139
python
en
code
0
github-code
6
25575152305
from unicodedata import mirrored import numpy as np import inspect import unittest def select_alternating_columns(a: np.ndarray) -> np.ndarray: """ Select alternating columns starting from the 0-th index of `a`. `a` will be at least 2 dimensions. >>> a = np.array([[0, 1, 2], ... [3, 4, 5]]) >>> select_alternating_columns(a) array([[0, 2], [3, 5]]) """ if a.shape[1]%2 == 0: valid_columns = np.array([True if i % 2 == 0 else False for i in range(a.shape[1])]) return a[:, valid_columns] valid_columns = np.array([True if i % 2 == 0 else False for i in range(a.shape[1])]) return a[:, valid_columns] def popcount_rows(a: np.ndarray) -> np.ndarray: """ Return an array containing the popcount of every row in `a`. `a` is 2d and consists of 0s and 1s only. >>> a = np.array([[0, 0, 1], ... [0, 0, 0], ... [1, 0, 1], ... [1, 1, 1]]) >>> popcount_rows(a) array([1, 0, 2, 3]) """ return np.array([np.sum(row) for row in a]) def remove_all_zero_rows(a: np.ndarray) -> np.ndarray: """ Removes any rows that entirely consist of zeros from `a`. >>> a = np.array([[0, 0, 0], ... [0, 0, 1]]) >>> remove_all_zero_rows(a) array([[0, 0, 1]]) """ count_non_zero = np.array([np.sum(row) for row in a]) return a[count_non_zero != 0] def swap_halves(a: np.ndarray) -> np.ndarray: """ Swaps the front and back halves of `a`, which is at least 2 dimensions. If the array's size is odd, includes the middle element as the first element of the back half. >>> swap_halves(np.array([0, 1, 2, 3])) array([2, 3, 0, 1]) >>> swap_halves(np.array([0, 1, 2])) array([1, 2, 0]) >>> a = np.reshape(range(8), [4, 2]) >>> a array([[0, 1], [2, 3], [4, 5], [6, 7]]) >>> swap_halves(a) array([[4, 5], [6, 7], [0, 1], [2, 3]]) """ firs_half = a[:len(a) // 2] second_half = a[len(a) // 2:] return np.concatenate([second_half, firs_half]) def trim_zeros_on_edges_2d(a: np.ndarray) -> np.ndarray: """ Trims zeros around a rectangular 1-delimited section. The section delimited by 1s will always be rectangular and there is only one such section. `a` will be 2d and consist of 0s and 1s only. >>> a = np.array([[0, 0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0, 0], ... [0, 1, 0, 1, 0, 0], ... [0, 1, 1, 1, 0, 0], ... [0, 0, 0, 0, 0, 0]]) >>> >>> trim_zeros_on_edges_2d(a) array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) """ #rows with all zeros b = np.array([np.sum(row) for row in a]) zero_columns = np.array([True if i == 0 else False for i in b]) #columns with all zeros c = np.array([np.sum(column) for column in a.T]) zero_rows = np.array([True if i == 0 else False for i in c]) #select only rows and columns that are not all zeros v = a[~zero_columns, :] v = v[:, ~zero_rows] return v def one_hot_encode_1d(a: np.ndarray) -> np.ndarray: """ One hot encode every row in `a`. Values of `a` are unique positive whole numbers or zero in the range [0-n). >>> one_hot_encode_1d(np.array([3, 0, 1, 2])) array([[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) """ #max value of a m = a.max() + 1 return np.array([[ 1 if i == v else 0 for i in range(m)] for v in a]) def make_chessboard(size: int) -> np.ndarray: """ Makes a 2d chessboard pattern with both dimensions equal to `size`. The top-left corner should be 0. `size` must be >= 0. >>> make_chessboard(3) array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) >>> make_chessboard(4) array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) """ return np.array([[0 if i % 2 == j % 2 else 1 for j in range(size)] for i in range(size)]) def quad(a: np.ndarray) -> np.ndarray: """ Repeat the array horizontally and vertically. >>> quad(np.array([0, 1])) array([[0, 1, 0, 1], [0, 1, 0, 1]]) >>> quad(np.array([[0, 1], [2, 3]])) array([[0, 1, 0, 1], [2, 3, 2, 3], [0, 1, 0, 1], [2, 3, 2, 3]]) """ return np.tile(a, (2, 2)) def reflect_quad(a: np.ndarray) -> np.ndarray: """ Repeat the array horizontally and vertically but also flip/mirror/reflect the repeated array around the middle. >>> reflect_quad(np.array([0, 1, 2])) array([[0, 1, 2, 2, 1, 0], [0, 1, 2, 2, 1, 0]]) >>> a = np.array([[0, 1], ... [2, 3]]) >>> reflect_quad(a) array([[0, 1, 1, 0], [2, 3, 3, 2], [2, 3, 3, 2], [0, 1, 1, 0]]) """ #flip vertical and join rows b = [] if len(a.shape) > 1: b = np.flip(a, 0) b = np.concatenate([a, b]) c = [] #flip horizontal and join columns if a.shape[0] > 1: c = np.flip(b, 1) c = np.concatenate([b, c], 1) return c def rows_where_bits_set_at_idxes(a: np.ndarray, set_idxes: np.ndarray) -> np.ndarray: """ Return a list of indexes of rows with bits set at indexes specified by `set_idxes`. >>> a = np.array([[1, 0, 1, 0], ... [0, 1, 1, 0], ... [0, 1, 0, 1], ... [0, 1, 1, 1]]) >>> rows_where_bits_set_at_idxes(a, np.array([1, 3])) array([2, 3], dtype=int64) """ return np.array([i for i in range(len(a)) if np.any(a[i, set_idxes])]) class Test(unittest.TestCase): def test_select_alternating_columns_even(self): """ select alternating columns (even length) """ a = np.reshape(np.arange(16), [4, 4]) actual = select_alternating_columns(a) expected = np.array([[0, 2], [4, 6], [8, 10], [12, 14]]) np.testing.assert_equal(actual, expected) def test_select_alternating_columns_odd(self): """ select alternating columns (odd length) """ a = np.reshape(np.arange(6), [2, 3]) actual = select_alternating_columns(a) expected = np.array([[0, 2], [3, 5]]) np.testing.assert_equal(actual, expected) def test_popcount_rows(self): """ popcount rows """ a = np.array([[0, 0, 1], [0, 0, 0], [1, 0, 1], [1, 1, 1]]) actual = popcount_rows(a) expected = np.array([1, 0, 2, 3]) np.testing.assert_equal(actual, expected) def test_remove_all_zero_rows(self): """ remove all zero rows (integer) """ a = np.array([[0, 0, 0], [0, 0, 1]]) actual = remove_all_zero_rows(a) expected = np.array([[0, 0, 1]]) np.testing.assert_equal(actual, expected) def test_remove_all_zero_rows_float(self): """ remove all zero rows (float) """ a = np.array([[0., 0., 0.], [0., 0., 1.]]) actual = remove_all_zero_rows(a) expected = np.array([[0., 0., 1.]]) np.testing.assert_equal(actual, expected) def test_swap_halves_even(self): """ swap halves (even length) """ a = np.arange(8) actual = swap_halves(a) expected = np.array([4, 5, 6, 7, 0, 1, 2, 3]) np.testing.assert_equal(actual, expected) def test_swap_halves_odd(self): """ swap halves (odd length) """ a = np.arange(7) actual = swap_halves(a) expected = np.array([3, 4, 5, 6, 0, 1, 2]) np.testing.assert_equal(actual, expected) def test_swap_halves_2d_arr(self): """ swap halves (2d array) """ a = np.reshape(np.arange(8), [4, 2]) actual = swap_halves(a) expected = np.array([[4, 5], [6, 7], [0, 1], [2, 3]]) np.testing.assert_equal(actual, expected) def test_trim_zeroes_on_edges_2d(self): """ trim zeros on edges 2d """ a = np.array([[0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 0, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0]]) expected = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) actual = trim_zeros_on_edges_2d(a) np.testing.assert_equal(actual, expected) def test_one_hot_encode_1d(self): """ one hot encode 1d """ a = np.array([3, 0, 1, 2]) expected = np.array([[0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]) actual = one_hot_encode_1d(a) np.testing.assert_equal(actual, expected) def test_make_chessboard_even(self): """ make chessboard (even size) """ expected = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) actual = make_chessboard(4) np.testing.assert_equal(actual, expected) def test_make_chessboard_odd(self): """ make chessboard (odd size) """ expected = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) actual = make_chessboard(3) np.testing.assert_equal(actual, expected) def test_quad(self): """ quad """ a = np.array([0, 1]) expected = np.array([[0, 1, 0, 1], [0, 1, 0, 1]]) actual = quad(a) np.testing.assert_equal(actual, expected) def test_quad_larger(self): """ quad (larger array) """ a = np.array([[0, 1], [2, 3]]) expected = np.array([[0, 1, 0, 1], [2, 3, 2, 3], [0, 1, 0, 1], [2, 3, 2, 3]]) actual = quad(a) np.testing.assert_equal(actual, expected) def test_reflect_quad(self): """ reflect quad """ a = np.array([0, 1, 2]) expected = np.array([[0, 1, 2, 2, 1, 0], [0, 1, 2, 2, 1, 0]]) actual = reflect_quad(a) np.testing.assert_equal(actual, expected) def test_reflect_quad_larger(self): """ reflect quad (larger array) """ a = np.array([[0, 1], [2, 3]]) expected = np.array([[0, 1, 1, 0], [2, 3, 3, 2], [2, 3, 3, 2], [0, 1, 1, 0]]) actual = reflect_quad(a) np.testing.assert_equal(actual, expected) def test_rows_where_bits_set_at_idxes(self): """ rows where bits are set at indexes """ a = np.array([[1, 0, 1, 0], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 1, 1]]) expected = np.array([2, 3]) set_idxes = np.array([1, 3]) actual = rows_where_bits_set_at_idxes(a, set_idxes) np.testing.assert_equal(actual, expected) test_src = inspect.getsource(Test) unittest.TestLoader.sortTestMethodsUsing = lambda _, x, y: ( test_src.index(f"def {x}") - test_src.index(f"def {y}") ) #run tests if __name__ == "__main__": unittest.main()
ThadeuFerreira/python_code_challengers
numpyArrays.py
numpyArrays.py
py
11,852
python
en
code
0
github-code
6
26735943730
import numpy as np from .utils import LinearAnnealer,ExponentialAnnealer import tqdm import torch import torch.nn as nn import wandb from progress.bar import Bar from array2gif import write_gif import copy from .utils import set_seed from .utils import save_rewards_meanvar_plot,get_logger,MLP,ReplayMemory import logging import time from torch.distributions.categorical import Categorical # With spinning up help ;) class VPG: def __init__(self, env, config): for k, v in config.items(): setattr(self, k, v) print(config) self.env = env self.config = copy.deepcopy(config) self.reset(self.seed) def reset(self, seed): self.seed = seed set_seed(self.seed) self.env.seed(self.seed) self.env.action_space.seed(self.seed) obs_size = self.env.observation_space.n if 'n' in self.env.observation_space.__dict__ else self.env.observation_space._shape[0] self.policy = MLP(self.nUnits, obs_size,self.env.action_space.n).to(self.device) self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=self.lr) def get_policy(self,s): return Categorical(logits=self.policy(s)) def get_action(self,s): return self.get_policy(s).sample() def update_net(self,ep_mem): def r_to_go(rewards): return torch.cumsum(rewards.flip(dims=[0]),dim=0).flip(dims=[0]) s = torch.stack([exp.s for exp in ep_mem.memory]) a = torch.stack([exp.a for exp in ep_mem.memory]) r = torch.stack([exp.r for exp in ep_mem.memory]) r = r_to_go(r) self.optimizer.zero_grad() ep_loss = -(self.get_policy(s).log_prob(a) * r).mean() ep_loss.backward() self.optimizer.step() return ep_loss def train(self): bar = Bar('{}'.format('Training'), max=self.nepisodes) self.logger = get_logger("VPG",self.env.spec.name) episode_rewards = [] eval_rewards = [] n_experience = 0 last_eval_mean = 0 last_eval_std = 0 step = 0 for ep in (range(self.nepisodes)): self.policy.train() replaymem = ReplayMemory(10000,1) state = self.env.reset(seed=self.seed) ep_reward = 0 for t in range(1,self.max_steps): action = self.get_action(torch.tensor(state).unsqueeze(0).float()) new_state, reward, done, info = self.env.step(action.item()) ep_reward += reward replaymem.add_exp(torch.tensor(state).unsqueeze(0).float(),action,reward,torch.tensor(new_state).unsqueeze(0).float(),int(done)) state = new_state step += 1 if done: break self.update_net(replaymem) if self.num_eval_episodes > 0 and ((ep % self.eval_freq )==0): temp_eval_rewards = [] for _ in range(self.num_eval_episodes): temp_eval_rewards.append(self.evaluate()) last_eval_mean = np.mean(temp_eval_rewards) last_eval_std = np.std(temp_eval_rewards) eval_rewards.append(temp_eval_rewards) if self.use_wandb: wandb.log({"episode_reward": ep_reward,'eval_reward_mean':last_eval_mean,'eval_reward_std':last_eval_std}) episode_rewards.append(ep_reward) ep_info = ('Episode '+str(ep)+' reward: ' + str(ep_reward) + ' Mean r over last 20 episodes :' + str(np.mean(episode_rewards[-20:]).item())+' last eval mean,std ' +str(last_eval_mean)+' '+str(last_eval_std)) if "cart" in self.env.spec.name.lower() and np.mean(episode_rewards[-20:]).item() > 480: print("Solved cartpole exiting early") bar.finish() self.logger.info(ep_info) return eval_rewards, np.mean(episode_rewards[-30:]).item() self.logger.info( ep_info) Bar.suffix = ep_info bar.next() bar.finish() return eval_rewards, np.mean(episode_rewards[-30:]).item() def show_results(self): self.evaluate(save_gif=True) def evaluate(self,save_gif = False): self.policy.eval() state = self.env.reset(seed=self.seed) total_reward = 0 frames = [] for t in range(1,self.max_steps): action = self.get_action(torch.tensor(state).unsqueeze(0).float()) new_state, reward, done, info = self.env.step(action.item()) if save_gif: img = self.env.render(mode="rgb_array") frames.append(img) total_reward += reward state = new_state if done : break if save_gif: write_gif([np.transpose(f, axes=[2,0, 1]) for f in frames], 'gifs/vpg_'+self.env.spec.name+'.gif', fps=30) if self.use_wandb: wandb.log({"loss": total_reward}) return total_reward
gauthierboeshertz/reel
algos/plearners/vpg.py
vpg.py
py
5,225
python
en
code
0
github-code
6
70541333949
import os import re import spotipy from moviepy.editor import * from urllib.parse import quote from urllib import request as rq from youtube_dl import YoutubeDL from spotipy.oauth2 import SpotifyClientCredentials ## fix to skip use for PYTHONPATH sys.path.append(os.getcwd()) sys.path.append(os.path.join(os.getcwd(),"..","common")) from common.common import controller_common common = controller_common() class controller_spotify: def __init__(self,client_api,token_api,user): self.__CLIENT_ID = client_api self.__CLIENT_SECRET = token_api self.__USER_ID = user self.auth_manager = SpotifyClientCredentials( client_id=self.__CLIENT_ID, client_secret=self.__CLIENT_SECRET ) self.sp = spotipy.Spotify(auth_manager=self.auth_manager) def get_ydl_opts(self, path): return { "format": "bestaudio/best", "outtmpl": f"{path}/%(id)s.%(ext)s", "ignoreerrors": True, "postprocessors": [ { "key": "FFmpegExtractAudio", "preferredcodec": "mp3", "preferredquality": "320", } ], } def get_user_playlists(self): return [ {"value": pl.get("uri"), "name": pl.get("name")} for pl in self.sp.user_playlists(self.__USER_ID).get("items") ] def normalize_str(self, string): return string.translate(str.maketrans('\\/:*?"<>|', "__ ")) def get_playlist_details(self, pl_uri): offset = 0 fields = "items.track.track_number,items.track.name,items.track.artists.name,items.track.album.name,items.track.album.release_date,total,items.track.album.images" pl_name = self.sp.playlist(pl_uri)["name"] pl_items = self.sp.playlist_items( pl_uri, offset=offset, fields=fields, additional_types=["track"], )["items"] pl_tracks = [] while len(pl_items) > 0: for item in pl_items: if item["track"]: track_name = self.normalize_str(item["track"]["name"]) artist_name = self.normalize_str( item["track"]["artists"][0]["name"] ) pl_tracks.append( { "uri": quote( f'{track_name.replace(" ", "+")}+{artist_name.replace(" ", "+")}' ), "file_name": f"{artist_name} - {track_name}", "track_name": track_name, "artist_name": artist_name, "album_name": self.normalize_str( item["track"]["album"]["name"] ), "album_date": item["track"]["album"]["release_date"], "track_number": item["track"]["track_number"], "album_art": item["track"]["album"]["images"][0]["url"], } ) offset = offset + len(pl_items) pl_items = self.sp.playlist_items( pl_uri, offset=offset, fields=fields, additional_types=["track"], )["items"] return {"pl_name": pl_name, "pl_tracks": pl_tracks} def check_existing_tracks(self, playlist, path): existing_tracks = os.listdir(path) tracks = [ track for track in playlist["pl_tracks"] if f"{track['file_name']}.mp3" not in existing_tracks ] return tracks def download_tracks(self, pl_uri): count = 0 items = list() pl_details = self.get_playlist_details(pl_uri) path = common.create_download_directory(pl_details["pl_name"]) tracks = self.check_existing_tracks(pl_details, path) print( f"\n\033[1m\033[33m[info] Downloading {len(tracks)} tracks from {pl_details['pl_name']}\033[0m" ) with YoutubeDL(self.get_ydl_opts(path)) as ydl: for track in tracks: html = rq.urlopen( f"https://www.youtube.com/results?search_query={track['uri']}" ) video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode()) if video_ids: url = "https://www.youtube.com/watch?v=" + video_ids[0] print ( f"Add [{count}] - {url}" ) count = count + 1 items.append(url) res = common.thread_pool(items,path,"download") if res: common.converterto_mp3(pl_details["pl_name"])
alejan2x/FuckDownload
spotify/spotify.py
spotify.py
py
4,850
python
en
code
0
github-code
6
23873824195
import cv2 import os # Input folder containing the saved images image_folder = '/Users/tobieabel/Desktop/video_frames/ConcatVideo/' # Output video file path output_video_path = '/Users/tobieabel/Desktop/video_frames/Youtube/v3_a demo.mp4' # Get the list of image files in the input folder image_files = os.listdir(image_folder) image_files.remove('.DS_Store') def file_sort_key(filename): # Extract the numeric portion of the filename number = int(os.path.splitext(filename)[0]) return number # Sort the files chronologically sorted_files = sorted(image_files, key=file_sort_key) print(sorted_files) # Get the dimensions of the first image to initialize the video writer first_image_path = os.path.join(image_folder, sorted_files[0]) first_image = cv2.imread(first_image_path) height, width, _ = first_image.shape #need to be careful of this. I scrapped a video from youtube whose resolution was an odd width 1740, height 988 #and these dimensions didn't work with cv2.VideoWriter so I had to use cv2.resize to change the images to 1920x1080 which is the closest accepatable format # Define the codec and create the video writer fourcc = cv2.VideoWriter_fourcc(*'mp4v') fps = 30 # Adjust as needed video_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) # Loop through the image files and write them to the video for i in sorted_files: image_path = os.path.join(image_folder, i) image = cv2.imread(image_path) # Write the image to the video writer video_writer.write(image) # Release the video writer video_writer.release() print(f"Video saved to: {output_video_path}")
tobieabel/demo-v3-People-Counter
Create_video.py
Create_video.py
py
1,633
python
en
code
0
github-code
6
35929199029
#!/usr/bin/python3 """base geometry class""" BaseGeometry = __import__('7-base_geometry').BaseGeometry Rectangle = __import__('9-rectangle').Rectangle """class to represent a square""" class Square(Rectangle): """square Class""" def __init__(self, size): """init""" self.integer_validator("size", size) super().__init__(size, size) self.__size = size
philimon-reset/alx-higher_level_programming
0x0A-python-inheritance/10-square.py
10-square.py
py
411
python
en
code
2
github-code
6
32731778878
# 피보나치 수 - 재귀호출 def fib(n): if(n == 1 or n == 2): return 1 else: global count count += 1 return fib(n-1) + fib(n-2) # 피보나치 수 - 동적 프로그래밍 def fibonacci(n): f = [] f.append(1) f.append(1) cnt = 0 for i in range(2, n): cnt += 1 f.append(f[i-1] + f[i-2]) return cnt count = 1 n = int(input()) fib(n) print(count, fibonacci(n))
woo222/baekjoon
python/동적프로그램/b1_24416_알고리즘 수업-피보나치 수1.py
b1_24416_알고리즘 수업-피보나치 수1.py
py
445
python
ko
code
0
github-code
6
29262983646
import sys import socket import platform import psutil import wmi import urllib.request from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QPushButton, QTextEdit, QWidget from PyQt5.QtCore import Qt from PyQt5.QtGui import QFont, QColor class App(QMainWindow): def __init__(self, app): super().__init__() self.app = app self.initUI() def initUI(self): self.setWindowTitle('App') self.setGeometry(200, 200, 800, 600) central_widget = QWidget(self) self.setCentralWidget(central_widget) layout = QVBoxLayout() self.text_output = QTextEdit(self) self.text_output.setFont(QFont("Arial", 12)) layout.addWidget(self.text_output) button_ipv4_info = QPushButton('Get My IPv4', self) button_proxy_info = QPushButton('Check Proxy Info', self) button_system_info = QPushButton('Retrieve System Info', self) button_bios_info = QPushButton('Fetch BIOS Info', self) button_hostname_info = QPushButton('Get Hostname', self) button_ipv4_info.setFont(QFont("Arial", 10)) button_proxy_info.setFont(QFont("Arial", 10)) button_system_info.setFont(QFont("Arial", 10)) button_bios_info.setFont(QFont("Arial", 10)) button_hostname_info.setFont(QFont("Arial", 10)) button_ipv4_info.setStyleSheet("background-color: lightblue;") button_proxy_info.setStyleSheet("background-color: lightgreen;") button_system_info.setStyleSheet("background-color: lightcoral;") button_bios_info.setStyleSheet("background-color: lightsalmon;") button_hostname_info.setStyleSheet("background-color: lightyellow;") layout.addWidget(button_ipv4_info) layout.addWidget(button_proxy_info) layout.addWidget(button_system_info) layout.addWidget(button_bios_info) layout.addWidget(button_hostname_info) central_widget.setLayout(layout) button_ipv4_info.clicked.connect(self.fetch_ipv4_info) button_proxy_info.clicked.connect(self.check_proxy_info) button_system_info.clicked.connect(self.retrieve_system_info) button_bios_info.clicked.connect(self.fetch_bios_info) button_hostname_info.clicked.connect(self.get_host_name) def fetch_ipv4_info(self): hostname = socket.gethostname() ip = socket.gethostbyname(hostname) is_static = socket.gethostbyaddr(ip) interface = None if "Wi-Fi" in platform.platform(): interface = "Wi-Fi" elif "Ethernet" in platform.platform(): interface = "Ethernet" result = f"IPv4 Address: {ip}\nStatic: {is_static}\nNetwork Interface: {interface}" self.text_output.append(result) def check_proxy_info(self): proxy_handler = urllib.request.ProxyHandler() opener = urllib.request.build_opener(proxy_handler) try: opener.open("http://www.google.com", timeout=5) is_proxy_enabled = True except Exception: is_proxy_enabled = False proxy_status = "Proxy is enabled" if is_proxy_enabled else "Proxy is disabled" self.text_output.append(proxy_status) def retrieve_system_info(self): os_version = platform.platform() os_architecture = platform.architecture() num_cores = psutil.cpu_count(logical=False) ram = round(psutil.virtual_memory().total / (1024 ** 3), 2) result = f"Operating System Version: {os_version}\nArchitecture: {os_architecture}\nCPU Cores: {num_cores}\nRAM: {ram} GB" self.text_output.append(result) def fetch_bios_info(self): c = wmi.WMI() bios = c.Win32_BIOS()[0] result = f"BIOS Manufacturer: {bios.Manufacturer}\nBIOS Version: {bios.Version}\nBIOS Release Date: {bios.ReleaseDate}" self.text_output.append(result) def get_host_name(self): hostname = socket.gethostname() self.text_output.append(f"Hostname: {hostname}") if __name__ == '__main__': app = QApplication(sys.argv) window = App(app) window.show() sys.exit(app.exec_())
miko7ajradziw1llowicz/Zadanie-3-python
main.py
main.py
py
4,160
python
en
code
0
github-code
6
1363723921
from typing import Any, Dict, List, Type, TypeVar, Union from attrs import define as _attrs_define from attrs import field as _attrs_field from ..types import UNSET, Unset T = TypeVar("T", bound="FollowUpPriorityV2ResponseBody") @_attrs_define class FollowUpPriorityV2ResponseBody: """ Example: {'description': 'A follow-up that requires immediate attention.', 'id': '01GNW4BAQ7XRMFF6FHKNXDFPRW', 'name': 'Urgent', 'rank': 10} Attributes: id (str): Unique identifier for the follow-up priority option Example: 01GNW4BAQ7XRMFF6FHKNXDFPRW. name (str): Name of the follow-up priority option Example: Urgent. rank (int): Rank is used to order the follow-up priority options correctly Example: 10. description (Union[Unset, str]): Description of the follow-up priority option Example: A follow-up that requires immediate attention.. """ id: str name: str rank: int description: Union[Unset, str] = UNSET additional_properties: Dict[str, Any] = _attrs_field(init=False, factory=dict) def to_dict(self) -> Dict[str, Any]: id = self.id name = self.name rank = self.rank description = self.description field_dict: Dict[str, Any] = {} field_dict.update(self.additional_properties) field_dict.update( { "id": id, "name": name, "rank": rank, } ) if description is not UNSET: field_dict["description"] = description return field_dict @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: d = src_dict.copy() id = d.pop("id") name = d.pop("name") rank = d.pop("rank") description = d.pop("description", UNSET) follow_up_priority_v2_response_body = cls( id=id, name=name, rank=rank, description=description, ) follow_up_priority_v2_response_body.additional_properties = d return follow_up_priority_v2_response_body @property def additional_keys(self) -> List[str]: return list(self.additional_properties.keys()) def __getitem__(self, key: str) -> Any: return self.additional_properties[key] def __setitem__(self, key: str, value: Any) -> None: self.additional_properties[key] = value def __delitem__(self, key: str) -> None: del self.additional_properties[key] def __contains__(self, key: str) -> bool: return key in self.additional_properties
expobrain/python-incidentio-client
incident_io_client/models/follow_up_priority_v2_response_body.py
follow_up_priority_v2_response_body.py
py
2,629
python
en
code
4
github-code
6
37407208814
from jinja2 import Environment, BaseLoader from io import BytesIO import plotly import base64 ''' export = ExportHTML('testclass.html') export.render() ''' class ExportHTML: __template_vars = {'title':'Hello World','body':'Hello World !!!'} __template_html = ''' <html> <head lang="en"> <meta charset="UTF-8"> <title>{{ title }}</title> <style> table { border-collapse: collapse; width: 100%; } th { text-align: center; background-color: #ffd700; color: black; } tr:nth-child(even) {background-color: #f2f2f2;} tr { text-align: right; page-break-inside: avoid; } thead { display: table-header-group; } tfoot { display: table-row-group; } .break-before { page-break-before: always; } </style> </head> <body> <h1>Header</h1> {{ body }} <h2 class="break-before">Next Page</h2> </body> </html> ''' def encode_graph(self, fig): tmpfile = BytesIO() fig.savefig(tmpfile, format='png', bbox_inches='tight') encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8') fig_html = '<img src=\'data:image/png;base64,{}\'>'.format(encoded) return fig_html def plotly_img_uri(self, fig, height=300, width=1200, orca_path='C:/Users/Administrator/anaconda3/orca_app/orca.exe'): plotly.io.orca.config.executable = orca_path img_uri = base64.b64encode(plotly.io.to_image(fig, width=width, height=height)).decode('ascii') return '<img style="width: {width}; height: {height}" '\ 'src="data:image/png;base64,{img_uri}" />'.format(width=width, height=height, img_uri=img_uri) @property def template_vars(self): return self.__template_vars @template_vars.setter def template_vars(self, var_dict): self.__template_vars = var_dict @property def template_html(self): return self.__template_html @template_html.setter def template_html(self, htmlString): self.__template_html = htmlString def render(self, output_file): template = Environment(loader=BaseLoader()).from_string(self.template_html) template_vars = self.template_vars html_out = template.render(template_vars) with open(output_file, "w") as fh: fh.write(html_out)
etq-quant/etqbankloan
Lib/etiqalib/export_html.py
export_html.py
py
2,768
python
en
code
0
github-code
6
26656448918
#the code partial borrowed from # "Neural Network-based Reconstruction in Compressed Sensing #MRI Without Fully-sampled Training Data" import torch import torch.nn as nn import numpy as np import torch.nn.functional as F import util_torch as util_torch def absval(arr): """ Takes absolute value of last dimension, if complex. Input dims: (N, l, w, 2) Output dims: (N, l, w) """ # Expects input of size (N, l, w, 2) assert arr.shape[-1] == 2 return torch.norm(arr, dim=3) def scale(y, y_zf): """Scales inputs for numerical stability""" flat_yzf = torch.flatten(absval(y_zf), start_dim=1, end_dim=2) max_val_per_batch, _ = torch.max(flat_yzf, dim=1, keepdim=True) y = y / max_val_per_batch.view(len(y), 1, 1, 1) y_zf = y_zf / max_val_per_batch.view(len(y), 1, 1, 1) return y, y_zf class Upsample(nn.Module): """Upsamples input multi-channel image""" def __init__(self, scale_factor, mode, align_corners): super(Upsample, self).__init__() self.scale_factor = scale_factor self.mode = mode self.align_corners = align_corners def forward(self, x): return F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners) class ResBlock(nn.Module): '''5-layer CNN with residual output''' def __init__(self, n_ch_in=2, n_ch_out=2, nf=64, ks=3): super(ResBlock, self).__init__() self.n_ch_out = n_ch_out self.conv1 = nn.Conv2d(n_ch_in, nf, ks, padding = ks//2) self.conv2 = nn.Conv2d(nf, nf, ks, padding = ks//2) self.conv3 = nn.Conv2d(nf, nf, ks, padding = ks//2) self.conv4 = nn.Conv2d(nf, nf, ks, padding = ks//2) self.conv5 = nn.Conv2d(nf, n_ch_out, ks, padding = ks//2) self.relu = nn.ReLU(inplace=True) def forward(self, x): conv1_out = self.conv1(x) conv1_out = self.relu(conv1_out) conv2_out = self.conv2(conv1_out) conv2_out = self.relu(conv2_out) conv3_out = self.conv3(conv2_out) conv3_out = self.relu(conv3_out) conv4_out = self.conv4(conv3_out) conv4_out = self.relu(conv4_out) conv5_out = self.conv5(conv4_out) x_res = x[:,:self.n_ch_out,:,:] + conv5_out return x_res class Net(nn.Module): def __init__(self, K, lmbda, device, n_hidden=64): super(Net, self).__init__() #self.mask = mask self.lmbda = lmbda self.resblocks = nn.ModuleList() self.device = device for i in range(K): resblock = ResBlock(n_ch_in=2, nf=n_hidden) self.resblocks.append(resblock) self.block_final = ResBlock(n_ch_in=2, nf=n_hidden) def forward(self, ksp_input, sensemap, window = 1, mask = None): if mask is None: mask=torch.not_equal(ksp_input, 0) dtype=torch.complex64 mask = mask.type(dtype) x = util_torch.transpose_model(ksp_input * window, sensemap) x = util_torch.complex_to_channels(x)#;print(x.shape);quit() #ksp_input, x = scale(ksp_input, x) for i in range(len(self.resblocks)): # z-minimization x = x.permute(0, 3, 1, 2) z = self.resblocks[i](x) z = z.permute(0, 2, 3, 1) z = util_torch.channels_to_complex(z) # x-minimization #z_ksp = utils.fft(z) z_ksp = util_torch.model_forward(z, sensemap) #x_ksp = losslayer.data_consistency(z_ksp, y, self.mask, self.lmbda) x_ksp = (1 - mask) * z_ksp + mask * (self.lmbda*z_ksp + ksp_input) / (1 + self.lmbda) #x = utils.ifft(x_ksp) x = util_torch.transpose_model(x_ksp, sensemap) x = util_torch.complex_to_channels(x) x = x.permute(0, 3, 1, 2) x = self.block_final(x) return x
ikjalata/MRIunsup
model.py
model.py
py
3,925
python
en
code
0
github-code
6
28118192230
# -*- coding:utf-8 -*- from PySide2.QtCore import Signal from PySide2.QtWidgets import QDialog from core.options import MultiOption from ui.base.constants import ITEM_SEPARATORS from ui.base.ui_add_items import Ui_AddItemsDialog # noinspection PyTypeChecker from utils import warn, splitItems, isEmpty # noinspection PyTypeChecker class AddItemsDialog(QDialog, Ui_AddItemsDialog): ADD_EXCLUDE_MODULES = 0 ADD_HIDDEN_IMPORTS = 1 COLLECT_ALL_SUBMODULES = 3 COLLECT_ALL_DATA = 4 COLLECT_ALL_BINARIES = 5 COLLECT_ALL = 6 COPY_METADATA = 7 DEEP_COPY_METADATA = 8 DEFAULT_ITEMS_SEP = ";" itemsAdded = Signal(MultiOption, list) def __init__(self, parent): super().__init__(parent) self._action = -1 self._option = None self.setupUi() def setupUi(self, _=None): super(AddItemsDialog, self).setupUi(self) self.multiItemSeparatorCombo.addItems(ITEM_SEPARATORS.keys()) self.addButton.clicked.connect(self.onAddItem) def onAddItem(self): content = self.itemsEdit.toPlainText().replace("\n", "").replace("\r", "").strip() if isEmpty(content): warn(self, self.tr(u"Warning"), self.tr("Items cannot be empty!")) return content = content.replace(";", ";").replace(",", ",") sepKey = self.multiItemSeparatorCombo.currentText() items = splitItems(content, sepKey, self.DEFAULT_ITEMS_SEP) self.itemsAdded.emit(self._option, items) self.accept() def display(self, action, option): self._action = action self._option = option self.updateTitle() self.show() def updateTitle(self): if self._action == self.ADD_EXCLUDE_MODULES: self.setWindowTitle(self.tr("Add Exclude Modules")) elif self._action == self.ADD_HIDDEN_IMPORTS: self.setWindowTitle(self.tr("Add Hidden Imports")) elif self._action == self.COLLECT_ALL_SUBMODULES: self.setWindowTitle(self.tr("Collect all submodules from:")) elif self._action == self.COLLECT_ALL_DATA: self.setWindowTitle(self.tr("Collect all data from:")) elif self._action == self.COLLECT_ALL_BINARIES: self.setWindowTitle(self.tr("Collect all binaries from:")) elif self._action == self.COLLECT_ALL: self.setWindowTitle(self.tr("Collect all(submodules,data, bin...) from:")) elif self._action == self.COPY_METADATA: self.setWindowTitle(self.tr("Copy metadata for:")) elif self._action == self.DEEP_COPY_METADATA: self.setWindowTitle(self.tr("Copy metadata for(recursively):")) else: raise ValueError("unknown action") def hideEvent(self, event): super().hideEvent(event) self._action = -1 self._option = None self.setWindowTitle("") self.itemsEdit.setText("")
zimolab/PyInstallerGUI
ui/add_items_ui.py
add_items_ui.py
py
2,937
python
en
code
10
github-code
6
31975334850
import numpy as np import scipy.ndimage import scipy.misc import glob import torch from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim def loadPsf(psftype, fileformat): path='/gdata/zhoutk/Deconv/'+psftype files=glob.glob(path+'/'+'*'+fileformat) length=len(files) if length==0: print(path+'/') print('invalid psf file path') return im0=scipy.misc.imread(files[0]) shape=im0.shape psf=np.zeros((length, shape[0], shape[1])) files.sort() for i, file in enumerate(files): #print(file) psf[i,:,:]=scipy.misc.imread(file) #print(type(psf)) #print(psf.shape) return psf def convolvePsf3D(volumn, psf, psnr): ##normalize with its largest content psf=psf/np.sum(psf) #change from int8 to float64 volumn=volumn.astype('float64') #convolve psf with volumn #print(volumn.shape) #print(psf.shape) print('max_volumn: ', np.max(volumn)) #volumn=scipy.ndimage.zoom(volumn, 2.0) if torch.cuda.is_available(): psf=psf[:99, :, :] for i in range(len(psf.shape)): psf=np.flip(psf, i) psf=torch.from_numpy(psf.copy()).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).cuda() psf=Variable(psf, requires_grad=False) volumn=torch.from_numpy(volumn.copy()).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).cuda() volumn=Variable(volumn, requires_grad=False) output=F.conv3d(volumn, psf, padding=(49, 12, 12)) output=output.squeeze().cpu().data.numpy() else: output=scipy.ndimage.filters.convolve(volumn, psf, mode='constant') print('convolve output shape: ', output.shape) print('max_output: ', np.max(output)) #noise level --- gaussian noise sigma=np.max(output)/np.power(10, psnr/20) print('gaussian noise level:', sigma) noise=np.random.normal(0, sigma, output.shape) #add noise to the output output=np.clip(output+noise, 0, np.max(output)) #output=output[0:101,0:101,0:101] return output
rickyim/DeconvNet
source/PSFConv.py
PSFConv.py
py
2,123
python
en
code
0
github-code
6
74182199547
def EatUp (n): if n > 1: EatUp(n-1) print("eat %d" %n) elif n == 1: print("eat 1") def EatDown (n): if n > 1: print("eat %d" %n) EatDown(n-1) elif n == 1: print("eat 1") def Fac(n): result = 1 for i in range(2,n+1): print(i) result *= i return result def Fac_Recursive(n): if n == 0 or n == 1: return 1 else: return Fac_Recursive(n-1) * n def summ(n, l): if n == 0: return 0 elif n == 1: return l[0] else: return sum(n-1, l) + l[n-1] def summ2(l, fromI, toI): if fromI > toI: return 0 elif fromI == toI: return l[toI] else: return l[fromI] + summ2(l, fromI+1, toI) def summ3(l): n = len(l) if n == 0: return 0 elif n == 1: return l[0] else: return l[0] + summ3(l[1:]) def fibR(n): if n <= 1: return n else: return fibR(n-1) + fibR(n-2) print(fibR(8))
chollsak/KMITL-Object-Oriented-Data-Structures-2D
Recursive/recursive.py
recursive.py
py
1,049
python
en
code
0
github-code
6
71989647867
from tkinter import * import tkinter as tk import tkinter.messagebox from PIL import ImageTk, Image HEIGHT = 500 WIDTH = 600 root = tk.Tk() def restart(): ans = tkinter.messagebox.askyesno('Starting New Game','Are you sure?') if ans: root.destroy() from BallShooterLimit import Limit Limit() def history(): hist = tkinter.messagebox.askyesno('View History','Are you sure you would like to view history?') if hist: root.destroy() def exiting(): exiting = tkinter.messagebox.askyesno('Exit','Are you sure you would like to exit?') if exiting: root.destroy() def MainMenu(): root.title("Main Menu Page GUI") canvas = tk.Canvas(root,height = HEIGHT, width = WIDTH) canvas.pack() #this label shows a header in the main menu headerLabel = tk.Label(root, text = "Choose any of the options below: ") headerLabel.place(relx = 0.1, rely =0.1, relwidth = 0.85, relheight = 0.1) #this frame is for the "StartNewGame" button restartframe = tk.Frame(root,bg = '#ff99cc',bd = 5) restartframe.place(relx = 0.5, rely = 0.25,relwidth = 0.3, relheight = 0.1,anchor = 'n') #this label is for the "StartNewGame" button restartlabel = tk.Label(restartframe) restartlabel.place(relx = 0.4, rely =0, relwidth = 0.5, relheight = 1) #this is the "StartnewGame" button restartbutton = tk.Button(restartframe,text = "Start New Game",font = 40, fg = 'black', command = lambda: restart()) restartbutton.place(relx = 0.5,rely = 0.5, relwidth = 0.9, relheight = 1, anchor = 'center') #this frame is for the "ViewHistory" button histframe = tk.Frame(root,bg = '#ff99cc',bd = 5) histframe.place(relx = 0.5, rely = 0.35,relwidth = 0.3, relheight = 0.1,anchor = 'n') #this label is for the "ViewHistory" button histlabel = tk.Label(histframe) histlabel.place(relx = 0.1, rely =0, relwidth = 0.8, relheight = 1) #this is the "ViewHistory" button histbutton = tk.Button(histframe,text = "View History",font = 40, fg = 'black', command = lambda: history()) histbutton.place(relx = 0.5,rely = 0.5, relwidth = 0.9, relheight = 1, anchor = 'center') #this frame is for the "ExitGame" button exitframe = tk.Frame(root,bg = '#ff99cc',bd = 5) exitframe.place(relx = 0.5, rely = 0.45,relwidth = 0.3, relheight = 0.1,anchor = 'n') #this label is for the "StartNewGame" button exitlabel = tk.Label(exitframe) exitlabel.place(relx = 0.4, rely =0, relwidth = 0.5, relheight = 1) #this is the "StartnewGame" button exitbutton = tk.Button(exitframe,text = "Exit Game",font = 40, fg = 'black', command = lambda: exiting()) exitbutton.place(relx = 0.5,rely = 0.5, relwidth = 0.9, relheight = 1, anchor = 'center') root.mainloop()
Alfred-Akinkoye/reacTen
GameServer/MainMenuPage.py
MainMenuPage.py
py
2,800
python
en
code
0
github-code
6
19809320159
import time import constants as cons import matplotlib.pyplot as plt from preprocessing.images_reader import ImagesReader start_time = time.time() print('reading images...') reader = ImagesReader(cons.PREPROCESSED_DATASET_DIR) train_images = reader.read_train_images() classes = [None] * len(train_images) samples = [None] * len(train_images) for i, image_class in enumerate(train_images): classes[i] = image_class samples[i] = len(train_images[image_class]) plt.plot(classes, samples) plt.show() end_time = time.time() print('done in {:.2f}s'.format(end_time - start_time))
sachokFoX/caltech_256
code/run_data_distribution_analysis.py
run_data_distribution_analysis.py
py
589
python
en
code
0
github-code
6
12948066350
import matplotlib.pyplot as plt tiempo = [0,1,2,3,4,5] sensor = [4,5,6,8,9, 10] plt.plot(tiempo,sensor,'--,r') plt.title('Grafico sensor contra el tiempo') plt.xlabel('Tiempo(s)') plt.ylabel('Voltaje(v)') plt.savefig('sensor.png') plt.show() # Nota: se le puede poner el simbolo para que se grafique('--'), si no se pone nada se grafica como una linea recta # DICCIONARIO diccionario = {} diccionario['NombresEstudiantes'] = ['Andrea', 'Nicolle', 'Isabel', 'Santiago'] diccionario['EdadEstudiantes'] = [18,20,19,15] diccionario['Peso'] = [60,55,70,78] print(diccionario) print(diccionario['NombresEstudiantes'][-1],diccionario['EdadEstudiantes'][-1],diccionario['Peso'][-1])
vero-obando/Programacion
Clases/Graficos/curvas.py
curvas.py
py
679
python
es
code
0
github-code
6
11353054992
# Licensed under a 3-clause BSD style license - see LICENSE from __future__ import print_function, division import Icarus from Icarus.Utils.import_modules import * ##### Welcome message print( "Analysing some mock data. It is recommended to run it within the `ipython --pylab' environment.\n" ) ##### Loading the data atmo_fln = 'atmo_models.txt' data_fln = 'data.txt' ndiv = 5 porb = 10 * 3600 x2sini = 1.1 print( "Loading the data into an Icarus.Photometry object (failure to do so is likely due to missing atmosphere models).\n" ) fit = Icarus.Photometry.Photometry(atmo_fln, data_fln, ndiv, porb, x2sini) ##### This is the list of true parameters for the stars, as per construction incl = 75.*cts.degree corotation = 1. filling = 0.90 Tnight = 2500. gravdark = 0.08 K = 300e3 Tday = 5000. DM = 10.0 AJ = 0.02 par0 = np.r_[incl, corotation, filling, Tnight, gravdark, K, Tday, DM, AJ] ##### Fitting the data using a simple fmin algorithm from scipy ##### Here we make use of the Calc_chi2 function with offset_free = 1 in order to allow for a possible band calibration error, which we assume is 0.3 mag (see column 5 in data.txt). ##### We will also assume that corotation = 1, gravdark = 0.08 and K=300e3. ## Defining the func_par func_par = lambda p: np.r_[p[0], 1., p[1], p[2], 0.08, 300e3, p[3], p[4], p[5]] ## Wrapper function for the figure of merit to optimize def FoM(p): p = np.asarray(p) ## Return large value if parameters are out of bound if (p < np.r_[0.1, 0.1, 1500., p[2], 8., 0.]).any() or (p > np.r_[np.pi/2, 1.0, 8000., 8000., 12., 0.1]).any(): #print( "out-of-bound" ) return np.ones_like(fit.mag)*1e5 else: chi2, extras = fit.Calc_chi2(p, offset_free=0, func_par=func_par, full_output=True, verbose=False) return extras['res'] ## Initial guess par_guess = [70*cts.degree, 0.95, 2000., 5500., 10.3, 0.01] ## Running the fit print( "Performing a crude fit using the scipy.optimize.leastsq function.\n" ) print( "Beware that the fitting may not converge to the best-fit solution due to local minima. One should try to fit the data using diferent guess parameters or, even better, a more robust fitting algorithm.\n" ) print( "Also, do not expect the best-fit parameter to converge at the actual solution. The reason being that noise is added to the theoretical data when generating the mock data. Hence it might be that by sheer luck the mock data mimic a slightly different set of parameters. If one was to regenerate the mock data several times and rerun the fit, it would on average converge at the actual solution.\n" ) sol = scipy.optimize.leastsq(FoM, par_guess, full_output=True) par = sol[0] err = np.sqrt( sol[1].diagonal() ) ##### Printing the results print( "Results from the fitting:" ) print( "{:<28} {:>15} {:>15}".format("Parameter", "Actual solution", "Fitted Solution") ) print( "{:<28} {:>15.3f} {:>15.3f} +/- {:.3f}".format("inclination", incl/cts.degree, par[0]/cts.degree, err[0]/cts.degree) ) print( "{:<28} {:>15.3f} {:>15.3f} +/- {:.3f}".format("filling factor", filling, par[1], err[1]) ) print( "{:<28} {:>15.1f} {:>15.3f} +/- {:.3f}".format("Tnight", Tnight, par[2], err[2]) ) print( "{:<28} {:>15.1f} {:>15.3f} +/- {:.3f}".format("Tday", Tday, par[3], err[3]) ) print( "{:<28} {:>15.2f} {:>15.3f} +/- {:.3f}".format("DM", DM, par[4], err[4]) ) print( "{:<28} {:>15.3f} {:>15.3f} +/- {:.3f}".format("AJ", AJ, par[5], err[5]) ) print( "" ) ##### Plotting the data and model if possible if pylab: print( "Plotting the data. If nothing shows up, try pylab.show()." ) fig = pylab.figure() ax = fig.add_subplot(111) pl1 = ax.errorbar(np.r_[fit.data['phase'][0],fit.data['phase'][0]+1.], np.r_[fit.data['mag'][0],fit.data['mag'][0]], yerr=np.r_[fit.data['err'][0],fit.data['err'][0]], marker='s', mfc='red', mec='red', ms=3, ecolor='red', fmt='.') pl2 = ax.errorbar(np.r_[fit.data['phase'][1],fit.data['phase'][1]+1.], np.r_[fit.data['mag'][1],fit.data['mag'][1]], yerr=np.r_[fit.data['err'][1],fit.data['err'][1]], marker='s', mfc='blue', mec='blue', ms=3, ecolor='blue', fmt='.') phs = np.linspace(0, 2, 101) flux = fit.Get_flux_theoretical(par, [phs,phs], func_par=func_par) pl3 = ax.plot(phs, flux[0], 'r-') pl4 = ax.plot(phs, flux[1], 'b-') flux = fit.Get_flux_theoretical(par0, [phs,phs]) pl5 = ax.plot(phs, flux[0], 'r:') pl6 = ax.plot(phs, flux[1], 'b:') leg = ax.legend([pl1[0],pl3[0],pl5[0],pl2[0],pl4[0],pl6[0]], ["i","Fit","Real","g","Fit","Real"], ncol=2, loc=0, numpoints=1, scatterpoints=1) ax.set_xlabel("Orbital Phase") ax.set_ylabel("Magnitude") ax.set_xlim([0.,2.]) vals = np.r_[fit.data['mag'][0], fit.data['mag'][1]] ax.set_ylim([vals.max()+(vals.max()-vals.min())*0.1, vals.min()-(vals.max()-vals.min())*0.1]) pylab.show()
bretonr/Icarus
Examples/Example1/example1.py
example1.py
py
4,839
python
en
code
11
github-code
6
42345298259
def getLongestLine(img): longest = 0 for i in range(0, len(img)): if len(img[i]) > longest: longest = len(img[i]) return longest def rotate(img): width = getLongestLine(img) height = len(img) longest = width answer = [] if(width < height): longest = height for i in range(0, longest): answer.append([' '] * longest) for i in range(0, len(img)): for j in range(0, len(img[i])): try: print("Swapped at " + str(j) + " " + str(i)) answer[j][i] = img[i][j] except: print("Entered a space") answer[j][i] = ' ' print(answer[i]) lines = 1 while lines: lines = int(input()) img = [] for i in range(0, lines): line = input() img.append(list(line)) rotate(img) print()
yodigi7/kattis
CompetitionASCIIRotation.py
CompetitionASCIIRotation.py
py
890
python
en
code
2
github-code
6
41152382829
from tkinter import * import tkinter as tk from tkinter import ttk from tkinter import messagebox import pandas as pd class Tabla: def __init__(self,root, dataFrame, anchos, fechas, bgColor, posX, posY): self.anchos = anchos self.fechas = fechas self.nuevoDatos = [] self.componentes = [] cont = 0 self.df = dataFrame self.frm = ttk.Frame(root) for k in dataFrame: tmp = Entry(self.frm, width=anchos[cont], bg=bgColor, fg='black', font= ('Arial', 12), highlightthickness=1, highlightbackground="#000000", highlightcolor="#000000") tmp.grid(row=0, column=cont) tmp.insert(INSERT, k) cont += 1 self.lista = list(dataFrame.to_records(index=False)) self.filas = len(self.lista) self.columnas = cont for i in range(self.filas): row = [] for j in range(self.columnas): aux = Entry(self.frm, width=anchos[j], fg='black', font=('Arial',12,), highlightthickness=1, highlightbackground="#000000", highlightcolor="#000000") aux.grid(row=i + 1, column=j) if len(fechas) == 0: aux.insert(INSERT, self.lista[i][j]) else: if j in fechas: aux.insert(INSERT, pd.to_datetime(self.lista[i][j]).date().strftime('%d/%m/%y')) else: aux.insert(INSERT, self.lista[i][j]) aux.configure(state='readonly') row.append(aux) self.componentes.append(row) self.frm.pack() self.frm.place(x=posX, y=posY) def limpiar(self): for widget in self.frm.winfo_children(): widget.destroy() class EquiposFrame(): def __init__(self, ventana): self.cantEquipos = tk.StringVar() self.retirados = tk.StringVar() self.inscritos = tk.StringVar() self.mostrarTabla(ventana) tk.Label(ventana, text='Equipos', font=('Arial Black', 12), bg="#3a7ff6", width=25).place(x=15, y=50) tk.Button(ventana, text='listar', font=('Arial', 12), width=8, height=2, highlightbackground = "black", borderwidth=5, bg="white", command= lambda: self.mostrarTabla(ventana)).place(x=40, y=120) tk.Button(ventana, text='borrar', font=('Arial', 12), width=8, height=2, bg="white", borderwidth = 5, command=self.limpiarTabla).place(x=170, y=120) tk.Label(ventana, text='Cantidad de equipos', font=('Arial', 12), bg="white").place(x=25, y=220) tk.Label(ventana, text='Equipos retirados', font=('Arial', 12), bg="white").place(x=25, y=260) tk.Label(ventana, text='Equipos incritos', font=('Arial', 12), bg="white").place(x=25, y=300) tk.Button(ventana, textvariable=self.cantEquipos, font=('Arial', 12), state='disabled').place(x=300, y=210) tk.Button(ventana, textvariable=self.retirados, font=('Arial', 12), state='disabled').place(x=300, y=250) tk.Button(ventana, textvariable=self.inscritos, font=('Arial', 12), state='disabled').place(x=300, y=290) def mostrarTabla(self, ventana): archivo = pd.read_excel('Equipos.xlsx', sheet_name='Hoja1') self.cantEquipos.set(str(len(archivo['N°']))) self.retirados.set(list(archivo['Retirado']).count('Si')) self.inscritos.set(list(archivo['Retirado']).count('No')) # self.retirados.set(str(list(archivo['Retirado'].count('No')))) anchos = [5, 40, 20, 18, 10] fechas = [] self.tabla = Tabla(ventana, archivo,anchos,fechas,'#3a7ff6', 50, 350) def limpiarTabla(self): self.tabla.limpiar() class CampeonatoFrame(): def __init__(self, ventana): self.temporada = tk.StringVar() self.inicio = tk.StringVar() self.fin = tk.StringVar() tk.Label(ventana, text='Campeonato', font=('Arial Black', 12), bg="#3a7ff6", width=25).place(x=15, y=50) tk.Label(ventana, text='Fecha de Inicio', font=('Arial', 12), bg="white").place(x=25, y=100) tk.Label(ventana, text='Fecha Final', font=('Arial', 12), bg="white").place(x=25, y=140) tk.Entry(ventana, bd=3, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.temporada).place(x=300, y=50, width=120.0, height=30) tk.Entry(ventana, bd=3, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.inicio).place(x=300, y=90, width=120.0, height=30) tk.Entry(ventana, bd=3, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.fin).place(x=300, y=130, width=120.0, height=30) tk.Button(ventana, text='GENERAR', wraplength=125, justify=tk.LEFT, relief='flat', font=('Arial', 16, "bold"), anchor="w", borderwidth = 0, highlightthickness = 15, compound = 'center', bg="#3a7ff6", fg="white", activebackground="#3a7ff6", command= lambda: self.mostrarTabla(ventana)).place(x=500, y=70) def mostrarTabla(self, ventana): archivo = pd.read_excel('Partidos.xlsx', sheet_name='Hoja1') anchos = [5, 10, 60] fechas = [1] self.tabla = Tabla(ventana, archivo,anchos,fechas,'#3a7ff6', 50, 350) class ListaRegistroFrame(): def __init__(self, ventana): self.equipo = tk.StringVar() self.representante = tk.StringVar() self.jugadores = tk.StringVar() self.mostrarTabla(ventana) tk.Label(ventana, text='Lista de Registro', font=('Arial Black', 12), bg="#3a7ff6", width=25).place(x=15, y=50) tk.Label(ventana, text='Nombre del Equipo', font=('Arial', 12), bg="white").place(x=25, y=100) tk.Label(ventana, text='Representante', font=('Arial', 12), bg="white").place(x=25, y=140) tk.Label(ventana, text='Cantidad de Jugadores', font=('Arial', 12), bg="white").place(x=25, y=180) tk.Entry(ventana, bd=1, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.equipo).place(x=320, y=90, width=220.0, height=30) tk.Entry(ventana, bd=1, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.representante).place(x=320, y=130, width=220.0, height=30) tk.Entry(ventana, bd=1, bg="#F6F7F9", highlightthickness=2, font=("Arial", 11), textvariable=self.jugadores).place(x=320, y=170, width=220.0, height=30) tk.Button(ventana, text='AGREGAR', wraplength=125, justify=tk.LEFT, relief='flat', font=('Arial', 16, "bold"), anchor="w", borderwidth = 0, highlightthickness = 15, compound = 'center', bg="#3a7ff6", fg="white", activebackground="#3a7ff6", command= lambda:self.agregarEquipo(ventana)).place(x=580, y=115) def mostrarTabla(self, ventana): archivo = pd.read_excel('Equipos.xlsx', sheet_name='Hoja1') anchos = [5, 40, 20, 18, 10] fechas = [] self.tabla = Tabla(ventana, archivo,anchos,fechas,'#3a7ff6', 50, 350) def agregarEquipo(self, ventana): mensajes = '' if self.equipo.get() == "": mensajes += 'Debe ingresar el nombre del equipo\n' if self.jugadores.get().isnumeric() is False: mensajes += 'La cantidad de jugadores debe de ser un numero.\n' if self.representante.get() == "": mensajes += 'Debe ingresar el nombre del representante.\n' if len(mensajes) > 0: messagebox.showerror(title='ERROR', message=mensajes) return archivo = pd.read_excel('Equipos.xlsx', sheet_name='Hoja1') archivo.loc[archivo.shape[0]] = [len(archivo['N°']) + 1, self.equipo.get(), self.representante.get(), int(self.jugadores.get()), 'No'] archivo.to_excel('Equipos.xlsx', sheet_name='Hoja1', index=False) self.jugadores.set('') self.equipo.set('') self.representante.set('') self.mostrarTabla(ventana) class ReportesProblemasFrame(): def __init__(self, ventana): tk.Label(ventana, text='Reporte de Problema', font=('Arial Black', 12), bg="#3a7ff6", width=25).place(x=15, y=50) tk.Label(ventana, text='Informar Incidencias', font=('Arial', 12), bg="white").place(x=25, y=100) tk.Label(ventana, text='Describa su inconveniente', font=('Arial', 12), bg="#3a7ff6").place(x=50, y=180) self.texto = tk.Text(ventana, font=('Arial', 12), width=50, height=12) self.texto.place(x=50, y=200) tk.Button(ventana, text='ENVIAR', wraplength=125, justify=tk.LEFT, relief='flat', font=('Arial', 16, "bold"), anchor="w", borderwidth = 0, highlightthickness = 0, compound = 'center', bg="#3a7ff6", fg="white", activebackground="#3a7ff6", command=self.reportar).place(x=300, y=450) tk.Button(ventana, text='BORRADOR', wraplength=125, justify=tk.LEFT, relief='flat', font=('Arial', 16, "bold"), anchor="w", borderwidth = 0, highlightthickness = 0, compound = 'center', bg="#3a7ff6", fg="white", activebackground="#3a7ff6", command=self.borrador).place(x=450, y=450) def reportar(self): archivo = pd.read_excel('Problemas.xlsx', sheet_name='Hoja1') archivo.loc[archivo.shape[0]] = [len(archivo['Codigo']) + 1, self.texto.get("1.0","end-1c")] archivo.to_excel('Problemas.xlsx', sheet_name='Hoja1', index=False) self.texto.delete(1.0,END) messagebox.showinfo(title='EXITOSO', message='El problema se ha reportado satisfactoriamente') def borrador(self): self.texto.delete(1.0,END) class GestionEquipos(): def __init__(self): self.main_window = tk.Tk() w = 1000 h = 650 screen_width = self.main_window.winfo_screenwidth() screen_height = self.main_window.winfo_screenheight() x = (screen_width/2) - (w/2) y = (screen_height/2) - (h/2) self.main_window.geometry('%dx%d+%d+%d' % (w, h, x, y)) self.formActual = EquiposFrame(self.main_window) self.agregarBotonesPrincipales() self.main_window.mainloop() def agregarBotonesPrincipales(self): tk.Button(self.main_window, text='Equipos', command=self.abrirEquiposFrm).place(x=0, y=0) tk.Button(self.main_window, text='Campeonato', command=self.abrirCampeonatoFrm).place(x=52, y=0) tk.Button(self.main_window, text='Lista de Registro', command=self.abrirListaRegistroFrm).place(x=131, y=0) tk.Button(self.main_window, text='Reporte de Problemas', command=self.abrirReporteProblemaFrm).place(x=227, y=0) def limpiarVentana(self): for widget in self.main_window.winfo_children(): widget.destroy() def abrirEquiposFrm(self): self.limpiarVentana() self.agregarBotonesPrincipales() self.formActual = EquiposFrame(self.main_window) def abrirCampeonatoFrm(self): self.limpiarVentana() self.agregarBotonesPrincipales() self.formActual = CampeonatoFrame(self.main_window) def abrirListaRegistroFrm(self): self.limpiarVentana() self.agregarBotonesPrincipales() self.formActual = ListaRegistroFrame(self.main_window) def abrirReporteProblemaFrm(self): self.limpiarVentana() self.agregarBotonesPrincipales() self.formActual = ReportesProblemasFrame(self.main_window) programa = GestionEquipos()
Moisesmp75/TkinterForms
Trabajo4/programa.py
programa.py
py
11,298
python
es
code
0
github-code
6
23341249880
import json as js import csv import sys import jinja2 import os from datetime import datetime # import smtplib # read customers file to get information about customers def get_customers(customers_file, error): TITLE = [] FIRST_NAME = [] LAST_NAME = [] EMAIL = [] with open(customers_file, mode='r') as csv_file: customers = csv.DictReader(csv_file, delimiter=',') errorData = [] for customer in customers: if customer["EMAIL"] != '': TITLE.append(customer["TITLE"]) FIRST_NAME.append(customer["FIRST_NAME"]) LAST_NAME.append(customer["LAST_NAME"]) EMAIL.append(customer["EMAIL"]) else: errorData.append([customer["TITLE"], customer["FIRST_NAME"], customer["LAST_NAME"], customer["EMAIL"]]) with open(error, mode='w', newline='') as f: errorCustomer = csv.writer(f) errorCustomer.writerow(['TITLE','FIRST_NAME','LAST_NAME','EMAIL']) for customer in errorData: errorCustomer.writerow(customer) return TITLE, FIRST_NAME, LAST_NAME, EMAIL def read_template(email_template_file): with open(email_template_file, mode='r') as email_template: template = js.load(email_template) return template # Can use CLI Python Library to parse agv from CMD such as argparse, getopt,... def main(email_template, customers, path_output_emails, error): # how to use smtp send email # s = smtplib.SMTP(host='host_address', port=port) # s.starttls() # s.login(MY_ADDRESS, PASSWORD) TITLE, FIRST_NAME, LAST_NAME, EMAIL = get_customers(customers, error) template = read_template(email_template) if os.path.isdir(path_output_emails): os.chdir(path_output_emails) else: os.mkdir(path_output_emails) os.chdir(path_output_emails) now = datetime.now() env = jinja2.Environment() outputJsonFile = open("output.json", "w") resultData = [] for title, first_name, last_name, email in zip(TITLE, FIRST_NAME, LAST_NAME, EMAIL): data = {} body_template = env.from_string(template["body"]) data["from"] = template["from"] data["to"] = email data["subject"] = template["subject"] data["mineType"] = template["mineType"] data["body"] = body_template.render(TITLE=title, FIRST_NAME=first_name, LAST_NAME=last_name, TODAY=now.strftime('%d %b %Y')) resultData.append(data) # s.send_message(data) # del data output = js.dumps(resultData, indent=4) outputJsonFile.write(output) outputJsonFile.close() if __name__ == '__main__': main(sys.argv[1], sys.argv[2], sys.argv[3], sys.argv[4])
thanhthien272/sendEmailPython
send_email.py
send_email.py
py
2,750
python
en
code
0
github-code
6
36079551198
import sys import glob from log.logdb import LogDb from log.loader import LogLoader from gcp.storage import LogStorage from log.timeutil import timestamp class DbLoader: def __init__(self): self.book_last_time = 0 self.funding_last_time = 0 self.trade_last_time = 0 self.log_db = None self.log_loader = LogLoader(self.order_book_tick, self.trade_tick, self.funding_tick) def open_db(self, db_file=None): self.log_db = LogDb(db_file) self.log_db.connect() self.log_db.create_cursor() self.log_db.create() def close_db(self): self.log_db.close() def get_db(self): return self.log_db def load_line(self, line): self.log_loader.load_line(line) def load_lines(self, lines): for line in lines: self.log_loader.load_line(line) def load_file(self, log_file): print('Processs ' + log_file, end='') try: self.log_loader.load(log_file) except EOFError as e: print('error to process fileError EOF', e) except Exception as e: print('File process error SKIP', e) def load_dir(self, log_dir ='/tmp'): log_files = sorted(glob.glob(log_dir + '/' + '*.log')) for file in log_files: self.log_db.create_cursor() self.load_file(file) self.log_db.commit() log_files = sorted(glob.glob(log_dir + '/' + '*.log.gz')) for file in log_files: self.log_db.create_cursor() self.load_file(file) self.log_db.commit() def load_from_blobs(self, path=''): log_storage = LogStorage() log_storage.process_blob_dir(path, self.load_file) def load_from_blob_by_date(self, year, month, day): log_storage = LogStorage() log_storage.process_blob_date_with_padding(year, month, day, self.load_file) def order_book_tick(self, time_stamp, order_book): if self.book_last_time != time_stamp: self.log_db.insert_order_book_message(time_stamp, order_book) self.book_last_time = time_stamp def funding_tick(self, time_stamp, funding): self.log_db.insert_funding(time_stamp, funding) def trade_tick(self, time_stamp, buy_trade, sell_trade): for price in buy_trade.keys(): self.log_db.insert_buy_trade(time_stamp, price, buy_trade[price]) for price in sell_trade.keys(): self.log_db.insert_sell_trade(time_stamp, price, sell_trade[price]) if __name__ == '__main__': log_dir = '/tmp' db_file = '/tmp/bitlog.db' if len(sys.argv) == 2: log_dir = sys.argv[0] db_file = sys.argv[1] print(log_dir, db_file) db_loader = DbLoader() db_loader.open_db() db_loader.load_dir(log_dir) db_loader.close_db()
yasstake/mmf
log/dbloader.py
dbloader.py
py
2,864
python
en
code
1
github-code
6
73730402429
import boto3 import logging import os import json import time from datetime import datetime from jsonpath_ng.ext import parse import helpers logger = logging.getLogger() logger.setLevel(logging.INFO) utl = helpers.Utils() dyn = helpers.Dyn() ssm = boto3.client('ssm') ec2 = boto3.client('ec2') appValue = os.getenv('TAG_APP_VALUE') appName = os.getenv('APP_NAME') def getNicInformation(instance): logger.info(instance + "- getNicInformation") ssm_rsp = ssm.send_command( InstanceIds=[instance], DocumentName='AWS-RunShellScript', TimeoutSeconds=30, Parameters={ 'commands':[ "NIC=$(ifconfig -a | grep UP,BROADCAST | awk '{print substr($1, 1, length($1)-1)}');aws ssm put-parameter --name '/amplify/minecraftserverdashboard/" + instance + "/nic' --type 'String' --value $NIC" ] }, ) resp = checkExecutionLoop(instance,ssm_rsp["Command"]["CommandId"]) logger.info(resp) def minecraftInit(instance): logger.info(instance + " - minecraftInit") instanceInfo = dyn.GetInstanceAttr(instance) logger.info(instanceInfo) if instanceInfo['code'] != 200: logger.warning("Instance data does not exist") return False if 'runCommand' in instanceInfo['msg'] and 'workingDir' in instanceInfo['msg']: script = os.path.join(instanceInfo['msg']['workingDir'],instanceInfo['msg']['runCommand']) #script = instanceInfo['msg']['runCommand'] ssm_rsp = ssm.send_command( InstanceIds=[instance], DocumentName='AWS-RunShellScript', TimeoutSeconds=30, Parameters={ 'commands':[ script ], 'workingDirectory':[ instanceInfo['msg']['workingDir'] ], }, ) logger.info(ssm_rsp) else: logger.warning("RunCommand or Working Directories are not defined") return False def cwAgentStatusCheck(instance): logger.info(instance + " - cwAgentStatusCheck") ssmAgentStatus = ssmExecCommands(instance,"AmazonCloudWatch-ManageAgent",{"action": ["status"],"mode": ["ec2"]}) #logger.info(ssmAgentStatus) # Checking Agent Status if Success. Failed messages occurs when the CloudWatch Agent is not installed. if ssmAgentStatus["Status"] == "Success": agentDetails="" jpexpr = parse("$.pluginsDetails[?(@.Name[:] == 'ControlCloudWatchAgentLinux')].Output") for i in jpexpr.find(ssmAgentStatus): agentDetails = i.value if len(agentDetails) > 5: agentDetailsJson = json.loads(agentDetails) if agentDetailsJson["status"] == "running": logger.info("Agent is already running. Version :" + agentDetailsJson["version"]) # AmazonCloudWatch Agent configuration logger.info("Configuring agent") ssmAgentConfig = ssmExecCommands(instance,"AmazonCloudWatch-ManageAgent",{"action": ["configure"],"mode": ["ec2"],"optionalConfigurationLocation": ["/amplify/minecraftserverdashboard/amazoncloudwatch-linux"],"optionalConfigurationSource": ["ssm"],"optionalRestart": ["yes"]}) logger.info(ssmAgentConfig) return { "code": 200, "msg": "Agent is already running. Version :" + agentDetailsJson["version"] } else: logger.info("Agent Status: " + agentDetailsJson["status"] + " - configuration Status: " + agentDetailsJson["configstatus"]) return { "code": 400, "msg":"Agent Status: " + agentDetailsJson["status"] + " - configuration Status: " + agentDetailsJson["configstatus"] } else: logger.warning(agentDetailsJson) return { "code": 500, "msg": "Detailed information not available"} else: return { "code": 500, "msg": "Failed" } def cwAgentInstall(instance): ssmInstallAgent = ssmExecCommands(instance,"AWS-ConfigureAWSPackage",{"action": ["Install"],"name": ["AmazonCloudWatchAgent"]}) #logger.info(ssmInstallAgent) # Checking Agent Status if Success. Failed messages occurs when the CloudWatch Agent is not installed. if ssmInstallAgent["Status"] == "Success": # AmazonCloudWatch Agent installation jpexpr = parse("$.pluginsDetails[?(@.Name[:] == 'configurePackage')].Output") for i in jpexpr.find(ssmInstallAgent): agentDetails = i.value logger.info(agentDetails) # AmazonCloudWatch Agent configuration logger.info("Configuring agent") ssmAgentConfig = ssmExecCommands(instance,"AmazonCloudWatch-ManageAgent",{"action": ["configure"],"mode": ["ec2"],"optionalConfigurationLocation": ["/amplify/minecraftserverdashboard/amazoncloudwatch-linux"],"optionalConfigurationSource": ["ssm"],"optionalRestart": ["yes"]}) logger.info(ssmAgentConfig) def scriptExec(instance): ssmRunScript = ssmExecCommands(instance,"AWS-RunRemoteScript",{"sourceType": ["GitHub"],"sourceInfo": ["{\"owner\":\"arturlr\", \"repository\": \"minecraft-server-dashboard\", \"path\": \"scripts/adding_cron.sh\", \"getOptions\": \"branch:dev\" }"],"commandLine": ["bash adding_cron.sh"]}) logger.info(ssmRunScript) def sendCommand(instance, param, docName): ssm_rsp = ssm.send_command( InstanceIds=[instance], DocumentName=docName, TimeoutSeconds=30, Parameters=param ) # logger.info("sendCommand " + instance + " - " + ssm_rsp["Command"]["Status"]) return { "CommandId": ssm_rsp["Command"]["CommandId"], "Status": ssm_rsp["Command"]["Status"] } def listCommand(instance, commandId): ssm_rsp = ssm.list_commands( CommandId=commandId, InstanceId=instance, ) logger.info("listCommand " + instance + " - " + ssm_rsp["Commands"][0]["Status"]) return { "Status": ssm_rsp["Commands"][0]["Status"] } def getCommandDetails(instance, commandId): ssm_rsp = ssm.list_command_invocations( CommandId=commandId, InstanceId=instance, Details=True ) if 'CommandPlugins' in ssm_rsp["CommandInvocations"][0]: pluginsDetails = ssm_rsp["CommandInvocations"][0]["CommandPlugins"] logger.info("getCommandDetails " + instance + " - " + ssm_rsp["CommandInvocations"][0]["Status"]) return { "Status": ssm_rsp["CommandInvocations"][0]["Status"], "pluginsDetails": pluginsDetails } def checkExecutionLoop(instanceId, commandId, sleepTime=5): loopCount = 0 while True: checkStatusCommand = listCommand(instanceId, commandId) logger.info(instanceId + " - " + commandId + " - " + checkStatusCommand["Status"]) if checkStatusCommand["Status"] == "Success": getStatusDetails = getCommandDetails(instanceId, commandId) return getStatusDetails elif checkStatusCommand["Status"] == "Failed": return "Failed" elif loopCount > 5: logger.error("Timeout - Cancelling the Command") logger.error(checkStatusCommand) ssm.cancel_command( CommandId=commandId, InstanceIds=[instanceId] ) return "Cancelled" else: loopCount = loopCount + 1 time.sleep(sleepTime) def ssmExecCommands(instanceId, docName, params): logger.info("ssmExecCommands " + instanceId + " - " + docName) command = sendCommand(instanceId, params, docName) response = checkExecutionLoop(instanceId,command["CommandId"]) return response def handler(event, context): try: instanceId = event["instanceId"] # Execute minecraft initialization minecraftInit(instanceId) # Nic Value getNicInformation(instanceId) ## CloudWatch Agent Steps cwAgentStatus = cwAgentStatusCheck(instanceId) if cwAgentStatus['code'] != 200: cwAgentInstall(instanceId) scriptExec(instanceId) return { "code": 200, "msg": "CW Agent installed and Script executed"} else: return cwAgentStatus except Exception as e: logger.error('Something went wrong: ' + str(e)) return { "code": 500, "msg": str(e) }
arturlr/minecraft-server-dashboard
lambdas/configServer/index.py
index.py
py
8,475
python
en
code
2
github-code
6
22043825261
from flask import Response import json from presentation.contracts import HttpController, HttpRequest def adapt_route(flask_request, controller: HttpController): request = HttpRequest( params=flask_request.args, body=flask_request.json ) data = controller.handle(request) return Response( json.dumps(data.body), status=data.status, mimetype='application/json' ) try: request = HttpRequest( params=flask_request.args, body=flask_request.json ) data = controller.handle(request) return Response( json.dumps(data.body), status=data.status, mimetype='application/json' ) except Exception as e: return Response( json.dumps({"error": "Internal server error"}), status=500, mimetype='application/json' )
panda-coder/py-clean-flask
src/main/adapters/flask_route_adapter.py
flask_route_adapter.py
py
924
python
en
code
1
github-code
6
51262091
from typing import * # class Solution: # def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int: # n_str = str(n) # k = len(n_str) # res = 0 # for i in range(1, k): # res += len(digits) ** i # def dfs(cur, pos, res): # # base case # if pos == k: # res += 1 # return res # for d in digits: # if d < n_str[pos]: # res += len(digits) ** (k-1-pos) # elif d == n_str[pos]: # res = dfs(cur*10 + int(d), pos+1, res) # return res # res = dfs(0, 0, res) # return res class Solution: def atMostNGivenDigitSet(self, digits: List[str], n: int) -> int: n_str = str(n) k = len(n_str) # NOTE, need to use global global res res = 0 for i in range(1, k): res += len(digits) ** i def dfs(cur, pos): global res # base case if pos == k: res += 1 return for d in digits: if d < n_str[pos]: res += len(digits) ** (k-1-pos) elif d == n_str[pos]: dfs(cur*10 + int(d), pos+1) dfs(0, 0) return res if __name__ == "__main__": s = Solution() digits = ["7"] n = 8 assert s.atMostNGivenDigitSet(digits, n) == 1 digits = ["1","3","5","7"] n = 100 assert s.atMostNGivenDigitSet(digits, n) == 20
code-cp/leetcode
solutions/902/main.py
main.py
py
1,623
python
en
code
0
github-code
6
70929713788
# -*- coding: utf-8 -*- """ Created on Wed Sep 6 11:55:47 2023 @author: Gilberto """ import pandas as pd from datetime import datetime, timedelta class StraightLineAmortization: def __init__(self, settlement_date, maturity_date, first_payment_date, notional_amount, rate, basis_numerator, basis_denominator, amortization_years, payment_frequency): self.settlement_date = datetime.strptime(settlement_date, "%m/%d/%Y") if isinstance(settlement_date, str) else settlement_date self.maturity_date = datetime.strptime(maturity_date, "%m/%d/%Y") if isinstance(maturity_date, str) else maturity_date self.first_payment_date = datetime.strptime(first_payment_date, "%m/%d/%Y") if isinstance(first_payment_date, str) else first_payment_date self.notional_amount = notional_amount self.rate = rate/100 self.basis_numerator = basis_numerator self.basis_denominator = basis_denominator self.amortization_years = amortization_years # Add the payment_frequency variable self.payment_frequency = payment_frequency # Adjust the num_periods and monthly_principal_payment based on payment_frequency if self.payment_frequency == "1M": self.num_periods = self.amortization_years * 12 elif self.payment_frequency == "3M": self.num_periods = self.amortization_years * 4 elif self.payment_frequency == "6M": self.num_periods = self.amortization_years * 2 self.period_principal_payment = self.notional_amount / self.num_periods def compute_days(self, start_date, end_date): if self.basis_numerator == "ACT": days = (end_date - start_date).days else: days = 30 # assuming each month has 30 days if self.basis_denominator == 360: return days else: return days / 365.0 * 360.0 def get_next_dates(self, current_date): if current_date == self.settlement_date: return self.first_payment_date, self.first_payment_date # Calculate next_month and next_year based on payment_frequency if self.payment_frequency == "1M": months_increment = 1 elif self.payment_frequency == "3M": months_increment = 3 elif self.payment_frequency == "6M": months_increment = 6 next_month = (current_date.month + months_increment - 1) % 12 + 1 next_year = current_date.year + (current_date.month - 1 + months_increment) // 12 period_end_date = current_date.replace(year=next_year, month=next_month, day=self.first_payment_date.day) payment_date = period_end_date # If it's a weekend, move to the next business day for payment date while payment_date.weekday() >= 5: payment_date += timedelta(days=1) return period_end_date, payment_date def generate_schedule(self): data = [] current_date = self.settlement_date payment_number = 1 notional_amount = self.notional_amount while current_date < self.maturity_date and payment_number <= self.num_periods: period_start_date = current_date period_end_date, payment_date = self.get_next_dates(current_date) days_in_period = self.compute_days(period_start_date, period_end_date) actual_days_in_period = (period_end_date - period_start_date).days interest_for_period = (notional_amount * self.rate * days_in_period) / self.basis_denominator period_payment = round(interest_for_period + self.period_principal_payment,2) notional_amount -= self.period_principal_payment data.append([period_start_date, period_end_date, payment_date, payment_number, notional_amount + self.period_principal_payment, period_payment, self.period_principal_payment, actual_days_in_period]) current_date = period_end_date # Start next period the same day as the previous period's end date payment_number += 1 df = pd.DataFrame(data, columns=['Period Start Date', 'Period End Date', 'Payment Date', 'Payment Number', 'Outstanding Balance', 'Period Payment', 'Principal Payment', 'Actual Days in Period']) return df # Usage sla = StraightLineAmortization("8/1/2022", "8/1/2032", "9/1/2022", 600000, 7.03, "ACT", 360, 25, "3M") amortization_schedule = sla.generate_schedule() print(amortization_schedule)
gdelacruzv/Amortization_calculator
straightline_v2.py
straightline_v2.py
py
4,582
python
en
code
0
github-code
6
26396707826
# Establish the Python Logger import logging # built in python library that does not need to be installed import time from datetime import datetime import os import talking_code as tc speaking_log = False speaking_steps = False def set_speaking_log(on_off_setting = False): global speaking_log speaking_log = on_off_setting def get_speaking_log(): return speaking_log def set_speaking_steps(on_off_setting = False): global speaking_steps speaking_steps = on_off_setting def get_speaking_steps(): return speaking_steps def talk(speech): tc.say(speech) return def set_start_time(): start_time = time.time() return(start_time) def create_logger_Start(solution_name, start_time): logging.basicConfig(level=logging.INFO, filename=solution_name + '.log', filemode='w', format='%(asctime)s - %(levelname)s - %(message)s') process_start_time_stamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'[:-3]) logging.info(f'START {solution_name} ' + ('=' * 45) ) logging.info(f'START {solution_name} Start Time = {process_start_time_stamp}') logging.info(f'{solution_name} Step 0 - Initialize the configuration file parser') # return f'logger_started for {solution_name} at {process_start_time_stamp}' return logging def create_logger_start(solution_name, start_time): logging.basicConfig(level=logging.INFO, filename=solution_name + '.log', filemode='w', format='%(asctime)s - %(levelname)s - %(message)s') process_start_time_stamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'[:-3]) logging.info(f'START {solution_name} ' + ('=' * 45) ) logging.info(f'START {solution_name} Start Time = {process_start_time_stamp}') logging.info(f'{solution_name} Step 0 - Initialize the configuration file parser') # return f'logger_started for {solution_name} at {process_start_time_stamp}' return logging def append_log_file(solution_name): log_filename=solution_name + '.log' historical_log_filename=solution_name + '_history.log' with open(log_filename) as log_file: log_content = log_file.read() with open(historical_log_filename,'a') as historical_log_file: print(120*' ', file=historical_log_file) print(120*'>', file=historical_log_file) print(log_content, file=historical_log_file) print(120*'<', file=historical_log_file) print(120*' ', file=historical_log_file) return(log_content) def calculate_process_performance(solution_name, process_start_time): import time stop_time = time.time() # establish the stop time of the overall process. process_duration = stop_time - process_start_time process_stop_time_stamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f'[:-3]) logging.info(f'PERFORMANCE {solution_name} The total process duration was:{process_duration:.2f}') logging.info(f'PERFORMANCE {solution_name} Stop Time = {process_stop_time_stamp}') status = f'END {solution_name} Duration Classification Error - Process Duration UNKNOWN' if process_duration > 600.0: logging.info(f'PERFORMANCE {solution_name} LONG process duration greater than 10 Minutes:{process_duration:.2f}') logging.info(f'PERFORMANCE {solution_name} Performance optimization is required') elif process_duration > 120.0: logging.info(f'PERFORMANCE {solution_name} Medium process duration greater than 3 minutes:{process_duration:.2f}') logging.info(f'PERFORMANCE {solution_name} Performance optimization is optional') elif process_duration > 3.0: logging.info(f'PERFORMANCE {solution_name} Low process duration less than 3 minutes:{process_duration:.2f}') logging.info(f'PERFORMANCE {solution_name} Performance optimization is optional') elif process_duration < 3.0: logging.info(f'PERFORMANCE {solution_name} Short process duration less than 3 Seconds:{process_duration:.2f}') logging.info(f'PERFORMANCE {solution_name} Performance optimization is not reccomended') else: status = f'PERFORMANCE {solution_name} Duration Classification Error - Process Duration UNKNOWN' logging.info(f'END {solution_name} ' + ('=' * 45) ) return(status) def set_start_time(): start_time = time.time() return(start_time) def pvlog(log_level, log_string): global speaking_log global speaking_steps print(log_string) if speaking_log: tc.say(log_string) if speaking_steps: if log_string.find("Step") > -1: tc.say(log_string) if log_level == 'debug': logging.debug(log_string) if log_level == 'info': logging.info(log_string) if log_level == 'warn': logging.warn(log_string) if log_level == 'error': logging.error(log_string) if log_level == 'critical': logging.critical(log_string)
JoeEberle/kids_ABC_book
quick_logger.py
quick_logger.py
py
5,079
python
en
code
1
github-code
6
26120509391
import os import sys import csv from collections import Counter, defaultdict import pandas as pd from statsmodels.stats.inter_rater import aggregate_raters, fleiss_kappa #from pptx import Presentation # configure Django so we can use models from the annotate app sys.path.append('/home/nejl/Dropbox/projects/tator/repo/tator') os.environ['DJANGO_SETTINGS_MODULE'] = 'tagit.settings' import django django.setup() from django.contrib.auth.models import User from annotate.models import Query, Annotation, UserResponse from templates import slide_template # TODO: need to add sampling method that samples equally from dividing the # probability mass of the distribution into thirds: top most frequent, middle, # and bottom. # TODO: fix analysis to have a global collection filter and then make sure adding # annotations to queries in a different collection does not change the results def split_data_frame_by_prob(df, column, nbins): # splits a dataframe into 'nbins' of equal probability mass # using column specified by 'coilumn' df = df.sort_values(column, ascending=False) values = df[column] bin_probability = 1/nbins total = sum(values) cutoffs = [] cumulative_total = 0 next_bin_probability = bin_probability for i, count in enumerate(values): cumulative_total += count if cumulative_total/total < next_bin_probability: continue cutoffs.append(i) next_bin_probability += bin_probability start = 0 new_dfs = [] while cutoffs: cutoff = cutoffs.pop(0) if len(cutoffs) == 0: # last item; get the rest new_dfs.append(df[start:]) else: new_dfs.append(df[start:cutoff]) start = cutoff return new_dfs def load_queries(path): with open(path) as csvfile: df = pd.read_csv(csvfile, delimiter=';') return df def clean_queries(df): """Returns the input DataFrame of queries cleaned""" # filter out queries with length less than 2 characters long df = df[df['querystring'].str.len() > 1] return df def split_num(num, splits): """Returns the number 'num' divided into a list of numbers of size 'splits' """ splits = [int(num/splits)+1]*(num%splits) + [int(num/splits)]*(splits-num%splits) assert sum(splits) == num return splits def import_queries(path, collection, sample='first', limit=None, allow_dupes=False): df = load_queries(path) df = clean_queries(df) if not allow_dupes: # remove existing queries from candidate queries to sample existing = [query.text for query in Query.objects.all()] df = df[~df['querystring'].isin(existing)] if limit is not None: if sample == 'first': df = df[:limit] elif sample == 'random': df = df.sample(limit) elif sample == 'proportional': df = df.sample(limit, weights='countqstring') elif sample == 'split': split_size = 3 splits = split_data_frame_by_prob(df, 'countqstring', split_size) sizes = split_num(limit, split_size) sub_samples = [] for size, split_df in zip(sizes, splits): sub_samples.append(split_df.sample(size, weights='countqstring')) df = pd.concat(sub_samples) assert len(df) == limit else: print('Unknown sampling method') return for i, values in enumerate(df.values.tolist()): text, count = values Query.objects.create(text=text, count=count, collection=collection) print("Added {} queries to the database.\n".format(i+1)) print(df.describe()) def pretty_print_counter(counter, reverse=False): lines = [] for key, value in sorted(counter.items(), reverse=reverse): lines.append("{}: {}".format(key, value)) return "\n".join(lines) def get_user_results(username, collection=None): # for each user, display the number of results # user lines = ["*** Annotator: {} ***".format(username)] lines.append("===================================\n") responses = UserResponse.objects.filter(user__username=username) if collection is not None: responses = responses.filter(query__collection=collection) annotations = [r for r in responses if r.annotation] skipped = [r for r in responses if r.skipped] lines.append("{} Skipped Queries:\n".format(len(skipped))) for response in skipped: line =' "{}"\n --- "{}"'.format(response.query.text, response.skipped.description) lines.append(line) lines.append("\n{} Annotations:\n".format(len(annotations))) lines.append(Annotation._meta.get_field('is_geo').verbose_name) q1 = Counter(r.annotation.is_geo for r in annotations) lines.append(pretty_print_counter(q1, reverse=True)) lines.append("") lines.append(Annotation._meta.get_field('loc_type').verbose_name) q2 = Counter(r.annotation.loc_type for r in annotations) lines.append(pretty_print_counter(q2, reverse=True)) lines.append("") lines.append(Annotation._meta.get_field('query_type').verbose_name) q3 = Counter(r.annotation.query_type for r in annotations) lines.append(pretty_print_counter(q3)) return "\n".join(lines) def do_iaa_pairs(user_pairs, questions=(1,2,3), collection=None, level='fine'): results = defaultdict(list) for question in questions: for users in user_pairs: kappa = get_iaa(question, users=users, collection=collection, level=level) results[question].append(kappa) return results def print_iaa_pairs(results, user_pairs): print(' '+' '.join(', '.join(user) for user in user_pairs)) for question, kappas in results.items(): ks = ''.join("{:0<5.3} ".format(k) for k in kappas) print("Q{}: {}".format(question, ks)) def get_iaa(question_num, queries=None, users=None, collection=None, level='fine'): data = get_annotations(question_num, queries=queries, users=users, level=level, collection=collection) #n_cat = Annotation.get_num_categories(question_num) results = aggregate_raters(data, n_cat=None) kappa = fleiss_kappa(results[0]) return kappa def get_annotations(question_num, queries=None, users=None, level='fine', collection=None): assert level in ('fine', 'coarse') queries = Query.objects.exclude(responses__skipped__isnull=False).distinct() if collection is not None: queries = queries.filter(collection=collection) if queries is not None: queries = queries.filter(pk__in=queries) data = [] for query in queries: # get all non-skipped results responses = query.responses.exclude(skipped__isnull=False) if users is not None: # restrict annotations to supplied users responses = responses.filter(user__username__in=users) results = [r.annotation.get_question(question_num) for r in responses] if question_num in (2,3) and level == 'coarse': # use course grained agreement results = [r[0] for r in results] if results: data.append(results) return data def show_agreement(question_num, users, collection=None, skip_agree=True): lines = [] queries = Query.objects.exclude(responses__skipped__isnull=False).distinct() if collection is not None: queries = queries.filter(collection=collection) queries = sorted(queries, key=lambda x:x.pk) users.sort() col_width = max(len(u) for u in users) + 2 lines.append("".join("{u:{width}}".format(u=u, width=col_width) for u in users)) agree = 0 disagree = 0 for query in queries: responses = query.responses.order_by('user__username') answers = [r.annotation.get_question(question_num) for r in responses] if skip_agree and len(set(answers)) <= 1: # all annotators agree, skip agree += 1 continue disagree += 1 line = "".join("{a:<{width}}".format(a=a, width=col_width) for a in answers) + query.text lines.append(line) start = [ "Question {}:".format(question_num), "Number all agree: {}".format(agree), "Number with some disagreement: {}".format(disagree), "" ] return "\n".join(start + lines) def get_results(users): queries = Query.objects.exclude(responses__skipped__isnull=False).distinct() queries = sorted(queries, key=lambda x:x.pk) users.sort() rest_cols = ["Q{}_{}".format(num, user) for user in users for num in (1,2,3)] header = ['id', 'query'] + rest_cols rows = [header] for query in queries: row = [query.pk, query.text] responses = query.responses.order_by('user__username') for response in responses: row.append(response.annotation.get_question(1)) row.append(response.annotation.get_question(2)) row.append(response.annotation.get_question(3)) rows.append(row) return rows def export_results_csv(users, outfile='annotations.csv'): results = get_results(users) with open(outfile, 'w', encoding='utf8', newline='') as csvfile: writer = csv.writer(csvfile, delimiter=',') writer.writerows(results) def make_slides_latex(users, csv=None, outfile='slides/slides.tex'): if csv is None: results = get_results(users) else: with open(csv, encoding='utf8') as csvfile: results = list(csv.reader(csvfile)) lines = [] header = results[0] for i, query in enumerate(results[1:]): row1 = r"Q1 & {} & {} & {}\\".format(query[2], query[5], query[8]) row2 = r"Q2 & {} & {} & {}\\".format(query[3], query[6], query[9]) row3 = r"Q3 & {} & {} & {}\\".format(query[4], query[7], query[10]) rows = "\n".join([row1, row2, row3]) title = "Query {}".format(i+1) slide = slide_template.format(title=title, query=query[1], rows=rows) lines.append(slide) with open(outfile, 'w', encoding='utf8') as texfile: texfile.write('\n'.join(lines)) def make_slides_pptx(users, csv=None): """Not finished. Used latex instead""" if csv is None: results = get_results(users) else: with open(csv, encoding='utf8') as csvfile: results = list(csv.reader(csvfile)) header = results[0] prs = Presentation() slide_layout = prs.slide_layouts[1] for i, query in enumerate(results[1:]): slide = prs.slides.add_slide(slide_layout) slide.shapes.title.text = 'Query {}'.format(i+1) body_shape = slide.shapes.placeholders[1] tf = body_shape.text_frame p = tf.paragraphs[0] p.text = query[1] p.level = 0 prs.save('test.pptx')
ned2/tator
notebooks/utils.py
utils.py
py
11,139
python
en
code
0
github-code
6
71174455228
# -*- coding: utf-8 -*- import time, functools def metric(fn): def decorator(func): @functools.wraps(func) def wrapper(*args,**kw): print(fn) if fn.__str__()==fn else print('no metric args') start_time=time.time() return (func(*args,**kw),print('%s executed in %s ms' % (func.__name__, time.time()-start_time)))[0] return wrapper return decorator if fn.__str__()==fn else decorator(fn) @metric def fast(x, y): time.sleep(0.0012) return x + y; @metric('test') def slow(x, y, z): time.sleep(0.1234) return x * y * z; f = fast(11, 22) s = slow(11, 22, 33) if f != 33: print('测试失败!') elif s != 7986: print('测试失败!') else: print('测试成功!')
kfusac/LearnPython
LiaoxuefengPython/5_FunctionalProgramming/decorator.py
decorator.py
py
756
python
en
code
0
github-code
6
23995078592
import os from collections import deque from typing import Dict, List, Optional, Any import langchain import openai import pinecone from langchain.chains import LLMChain from langchain.chains.base import Chain from langchain.agents import AgentType, ZeroShotAgent, Tool, AgentExecutor, initialize_agent from langchain.llms import OpenAI, LlamaCpp, BaseLLM from langchain.prompts import PromptTemplate from langchain.memory import ConversationBufferMemory, ReadOnlySharedMemory from langchain.utilities import GoogleSearchAPIWrapper from langchain.vectorstores.base import VectorStore from pydantic import BaseModel, Field from langchain.embeddings import OpenAIEmbeddings import faiss from langchain.vectorstores import FAISS from langchain.docstore import InMemoryDocstore # Define your embedding model embeddings_model = OpenAIEmbeddings() # Initialize the vectorstore as empty embedding_size = 1536 index = faiss.IndexFlatL2(embedding_size) vectorstore = FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) # Initialize our LLM llm = OpenAI(temperature=0) class TaskCreationChain(LLMChain): """Chain to generates tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_creation_template = ( "You are a task creation AI that uses the result of an execution agent" " to create new tasks with the following objective: {objective}," " The last completed task has the result: {result}." " This result was based on this task description: {task_description}." " These are incomplete tasks: {incomplete_tasks}." " Based on the result, create new tasks to be completed" " by the AI system that do not overlap with incomplete tasks." " Return the tasks as an array." ) prompt = PromptTemplate( template=task_creation_template, input_variables=[ "result", "task_description", "incomplete_tasks", "objective", ], ) return cls(prompt=prompt, llm=llm, verbose=verbose) class TaskPrioritizationChain(LLMChain): """Chain to prioritize tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> LLMChain: """Get the response parser.""" task_prioritization_template = ( "You are a task prioritization AI tasked with cleaning the formatting of and reprioritizing" " the following tasks: {task_names}." " Consider the ultimate objective of your team: {objective}." " Do not remove any tasks. Return the result as a numbered list, like:" " #. First task" " #. Second task" " Start the task list with number {next_task_id}." ) prompt = PromptTemplate( template=task_prioritization_template, input_variables=["task_names", "next_task_id", "objective"], ) return cls(prompt=prompt, llm=llm, verbose=verbose) class ExecutionChain(AgentExecutor): """Chain to execute tasks.""" @classmethod def from_llm(cls, llm: BaseLLM, verbose: bool = True) -> AgentExecutor: """Get the response parser.""" template = """This is a conversation between a human and a bot: {chat_history} Write a summary of the conversation for {input}: """ prompt = PromptTemplate(template=template, input_variables=["chat_history", "input"]) memory = ConversationBufferMemory(memory_key="chat_history") read_memory = ReadOnlySharedMemory(memory=memory) summary_chain = LLMChain(memory=read_memory, prompt=prompt, llm=llm, verbose=True) search = GoogleSearchAPIWrapper() tools = [ Tool( name = "Search", func=search.run, description="useful for when you need to answer questions about current events" ), Tool( name = "Summary", func=summary_chain.run, description="useful for when you summarize a conversation. The input to this tool should be a string, representing who will read this summary." ) ] prefix = """ You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}. """ suffix = """ Your task: {task}. Response: {agent_scratchpad} """ prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["objective", "context", "task", "agent_scratchpad"], ) llm_chain = LLMChain(llm=llm, prompt=prompt) agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=verbose) return cls.from_agent_and_tools(agent=agent, tools=tools, verbose=verbose, memory=memory) todo_template = """ You are an expert in walking through your thoughts. You are able to take the main objective, as well as the tasks, and create step by step observations. Here is the objective: {objective} """ todo_prompt = PromptTemplate(template=todo_template, input_variables=["objective"]) todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt) search = GoogleSearchAPIWrapper() tools = [ Tool( name="Search", func=search.run, description="useful for when you need to answer questions about current events", ), Tool( name="TODO", func=todo_chain.run, description="useful for when you need to come up brainstorming for the current task at hand. Input: an objective to create a todo list for as well as the task. Output: a rational thought process behind the objective and task, enough to help you craft a perfect response.", ), ] prefix = """You are an AI who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.""" suffix = """Question: {task} {agent_scratchpad}""" zeroshot_prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"], ) def get_next_task( task_creation_chain: LLMChain, result: Dict, task_description: str, task_list: List[str], objective: str, ) -> List[Dict]: """Get the next task.""" incomplete_tasks = ", ".join(task_list) response = task_creation_chain.run( result=result, task_description=task_description, incomplete_tasks=incomplete_tasks, objective=objective, ) new_tasks = response.split("\n") return [{"task_name": task_name} for task_name in new_tasks if task_name.strip()] def prioritize_tasks( task_prioritization_chain: LLMChain, this_task_id: int, task_list: List[Dict], objective: str, ) -> List[Dict]: """Prioritize tasks.""" task_names = [t["task_name"] for t in task_list] next_task_id = int(this_task_id) + 1 response = task_prioritization_chain.run( task_names=task_names, next_task_id=next_task_id, objective=objective ) new_tasks = response.split("\n") prioritized_task_list = [] for task_string in new_tasks: if not task_string.strip(): continue task_parts = task_string.strip().split(".", 1) if len(task_parts) == 2: task_id = task_parts[0].strip() task_name = task_parts[1].strip() prioritized_task_list.append({"task_id": task_id, "task_name": task_name}) return prioritized_task_list def _get_top_tasks(vectorstore, query: str, k: int) -> List[str]: """Get the top k tasks based on the query.""" results = vectorstore.similarity_search_with_score(query, k=k) if not results: return [] sorted_results, _ = zip(*sorted(results, key=lambda x: x[1], reverse=True)) return [str(item.metadata["task"]) for item in sorted_results] def execute_task( vectorstore, execution_chain: LLMChain, objective: str, task: str, k: int = 5 ) -> str: """Execute a task.""" context = _get_top_tasks(vectorstore, query=objective, k=k) return execution_chain.run(objective=objective, context=context, task=task) class BabyAGI(Chain, BaseModel): """Controller model for the BabyAGI agent.""" task_list: deque = Field(default_factory=deque) task_creation_chain: TaskCreationChain = Field(...) task_prioritization_chain: TaskPrioritizationChain = Field(...) execution_chain: ExecutionChain = Field(...) task_id_counter: int = Field(1) vectorstore: VectorStore = Field(init=False) max_iterations: Optional[int] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def add_task(self, task: Dict): self.task_list.append(task) def print_task_list(self): print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m") for t in self.task_list: print(str(t["task_id"]) + ": " + t["task_name"]) def print_next_task(self, task: Dict): print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m") print(str(task["task_id"]) + ": " + task["task_name"]) def print_task_result(self, result: str): print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m") print(result) @property def input_keys(self) -> List[str]: return ["objective"] @property def output_keys(self) -> List[str]: return [] def _call(self, inputs: Dict[str, Any]) -> Dict[str, Any]: """Run the agent.""" objective = inputs["objective"] first_task = inputs.get("first_task", "Make a todo list") self.add_task({"task_id": 1, "task_name": first_task}) num_iters = 0 while True: if self.task_list: self.print_task_list() # Step 1: Pull the first task task = self.task_list.popleft() self.print_next_task(task) # Step 2: Execute the task result = execute_task( self.vectorstore, self.execution_chain, objective, task["task_name"] ) this_task_id = int(task["task_id"]) self.print_task_result(result) # Step 3: Store the result in Pinecone result_id = f"result_{task['task_id']}" self.vectorstore.add_texts( texts=[result], metadatas=[{"task": task["task_name"]}], ids=[result_id], ) # Step 4: Create new tasks and reprioritize task list new_tasks = get_next_task( self.task_creation_chain, result, task["task_name"], [t["task_name"] for t in self.task_list], objective, ) for new_task in new_tasks: self.task_id_counter += 1 new_task.update({"task_id": self.task_id_counter}) self.add_task(new_task) self.task_list = deque( prioritize_tasks( self.task_prioritization_chain, this_task_id, list(self.task_list), objective, ) ) num_iters += 1 if self.max_iterations is not None and num_iters == self.max_iterations: print( "\033[91m\033[1m" + "\n*****TASK ENDING*****\n" + "\033[0m\033[0m" ) break return {} @classmethod def from_llm( cls, llm: BaseLLM, vectorstore: VectorStore, verbose: bool = False, **kwargs ) -> "BabyAGI": """Initialize the BabyAGI Controller.""" task_creation_chain = TaskCreationChain.from_llm(llm, verbose=verbose) task_prioritization_chain = TaskPrioritizationChain.from_llm(llm, verbose=verbose) llm_chain = LLMChain(llm=llm, prompt=zeroshot_prompt) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names) agent_executor = AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, verbose=True ) return cls( task_creation_chain=task_creation_chain, task_prioritization_chain=task_prioritization_chain, execution_chain=agent_executor, vectorstore=vectorstore, **kwargs, ) # Logging of LLMChains verbose = False # If None, will keep on going forever max_iterations: Optional[int] = None baby_agi = BabyAGI.from_llm( llm=llm, vectorstore=vectorstore, verbose=verbose, max_iterations=max_iterations ) baby_agi({"objective": 'Write a cohesive and articulated story about a man named Jack who conquers the world.'})
satpat2590/somelangchainfun
main.py
main.py
py
13,333
python
en
code
2
github-code
6
30728237360
import fileinput import sys from collections import deque, defaultdict, Counter from functools import lru_cache from itertools import permutations, combinations, combinations_with_replacement, product sys.setrecursionlimit(10000000) dd = defaultdict(lambda: 0) dx = [0, 0, -1, 1] # NSWE dy = [-1, 1, 0, 0] # NSWE p1 = 6 p2 = 10 def part1(p1, p2): die = 1 score1 = score2 = 0 turn = True rolled = 0 while (score1 < 1000 and score2 < 1000): d1 = die die = die % 100 + 1 d2 = die die = die % 100 + 1 d3 = die die = die % 100 + 1 rolled += 3 roll = d1+d2+d3 if turn: p1 = (p1 - 1 + roll) % 10 + 1 score1 += p1 else: p2 = (p2 - 1 + roll) % 10 + 1 score2 += p2 turn = not turn return min(score1, score2) * rolled @lru_cache(maxsize=None) def old_dp(p1, p2, score1, score2, turn): if score1 >= 21: return Counter({"p1": 1}) elif score2 >= 21: return Counter({"p2": 1}) s = Counter() for i, j, k in product([1, 2, 3], repeat=3): if turn: z = (p1 - 1 + i+j+k) % 10 + 1 s += old_dp(z, p2, score1 + z, score2, not turn) else: z = (p2 - 1 + i+j+k) % 10 + 1 s += old_dp(p1, z, score1, score2+z, not turn) return s dices = [] for i, j, k in product([1, 2, 3], repeat=3): dices.append(i+j+k) dices = Counter(dices) @lru_cache(maxsize=None) def dp(p1, p2, score1, score2): if score1 >= 21: return (1,0) elif score2 >= 21: return (0,1) a = b = 0 for k,times in dices.items(): z = (p1 - 1 + k) % 10 + 1 x,y = dp(p2, z, score2, score1 + z) a+=times * x b+=times * y return (b,a) # print(part1(p1, p2), max(old_dp(p1, p2, 0, 0, True))) print(part1(p1, p2), max(dp(p1, p2, 0, 0)))
mdaw323/alg
adventofcode2021/21.py
21.py
py
1,904
python
en
code
0
github-code
6
72052703228
import sys, json from urllib.request import urlopen from collections import OrderedDict list_host = 'http://localhost:5000' list_url = list_host + '/api/3/action/organization_list' get_url = list_host + '/api/3/action/organization_show' contents = urlopen(list_url) org_list = json.load(contents)['result'] for org_name in org_list: org_url = get_url + "?id=" + org_name print("=== Loading " +org_name + " from " + org_url) org_content = urlopen(org_url) org_obj = json.load(org_content)['result'] org = OrderedDict() for key in ('name', 'title', 'description', 'site', 'email', 'region', 'identifier'): if key in org_obj and org_obj[key]: org[key] = org_obj[key] org_filename = "orgs/"+org_name+".json" with open(org_filename,"w+") as f: f.write(json.dumps(org, indent=4)) print("=== Saved in "+org_filename+"\n")
italia/public-opendata-sources
export_orgs.py
export_orgs.py
py
888
python
en
code
17
github-code
6
20538743319
# https://leetcode.com/problems/rotting-oranges/ """ Time complexity:- O(N) Space Complexity:- O(N) """ """ Intuition: The algorithm uses Breadth-First Search (BFS) to simulate the rotting process, starting from initially rotten oranges. The queue (q) is used to keep track of the rotten oranges and their coordinates. The process continues until either all fresh oranges are rotten or there are no more rotten oranges. The time variable keeps track of the minutes passed during the rotting process. If there are still fresh oranges after the simulation, it means some oranges cannot be rotten, and -1 is returned. The algorithm follows a simple and intuitive approach of simulating the rotting process through BFS traversal. """ import collections from typing import List class Solution: def orangesRotting(self, grid: List[List[int]]) -> int: q = collections.deque() # Using deque for efficient pop and append operations fresh = 0 # Counter for fresh oranges time = 0 # Variable to track time (minutes) # Iterate through the grid to identify fresh and rotten oranges for r in range(len(grid)): for c in range(len(grid[0])): if grid[r][c] == 1: fresh += 1 if grid[r][c] == 2: q.append((r, c)) # Add coordinates of rotten oranges to the queue # Directions to check neighboring cells (up, down, left, right) directions = [[0, 1], [0, -1], [1, 0], [-1, 0]] # BFS traversal to simulate rotting process while fresh > 0 and q: length = len(q) for i in range(length): r, c = q.popleft() # Pop the front of the queue for dr, dc in directions: row, col = r + dr, c + dc # Check if the neighboring cell is in bounds and contains a fresh orange if ( row in range(len(grid)) and col in range(len(grid[0])) and grid[row][col] == 1 ): grid[row][col] = 2 # Mark the orange as rotten q.append((row, col)) # Add the coordinates to the queue fresh -= 1 # Decrease the count of fresh oranges time += 1 # Increment time after processing each minute # Return the time required if all fresh oranges are rotten, otherwise return -1 return time if fresh == 0 else -1
Amit258012/100daysofcode
Day92/rotten_oranges.py
rotten_oranges.py
py
2,532
python
en
code
0
github-code
6
19582017966
import socket host = "192.168.0.1" port = 80 s = socket.socket(socket.AF_INET,socket.SOCK_STREAM) s.connect((host,port)) buf = b'-' * 30 s.send(b'GET /HTTP/1.1\r\n\r\n') resp = s.recv(2048) print("Number of bytes",len(resp)) print(buf.decode()) s.close()
indrajithbandara/py-studies
client3.py
client3.py
py
255
python
en
code
0
github-code
6
2694410426
import os import sys import signal import threading import multiprocessing import atexit import time from ctypes import c_bool from .module import StateIO from .config import Config class Controller: def __init__(self, config: Config) -> None: args, self.cfg = config.load() self.pidfile_path = '/tmp/controller.pids' # should be config ? # make sure self.on_exist is always called atexit.register(self.on_shutdown) self.procmem = {"StateIO": multiprocessing.Array(StateIO, 1)} self.threads = {} self.processes = {} # parse config and import modules classes self.modules_classes = {} self.args_import(args) # initialize all modules self.modules_instances = [None]*99 self.modules_init() def _module_init(self, mtype): mclass = self.modules_classes[mtype]["ModuleName"] args = self.modules_classes[mtype]["Attributes"] init_order = self.modules_classes[mtype]["RunPriority"] in_list = self.modules_classes[mtype]["InputMem"] out_list = self.modules_classes[mtype]["OutputMem"] # initialize BaseModule class module = mclass(args, self.procmem, in_list, out_list) module.INIT_NAME = mtype module.INIT_ORDER = init_order module.SHUTDOWN = multiprocessing.Value(c_bool, False) # TODO tick_delta should be here with info msg if it is here run_type = self.modules_classes[mtype]["RunType"] if run_type == 0: module.IS_MAIN = True elif run_type == 1: module.IS_THREAD = True elif run_type == 2: module.IS_PROCESS = True else: print("fatal error: incorect RunType config at:\n module: {0}".format(module.INIT_NAME)) sys.exit(1) if self.modules_instances[init_order]: _name = self.modules_instances[init_order].INIT_NAME print("fatal error: equal RunPriority config at modules:\n" "module{0}\nmodule: {1}".format(_name, module.INIT_NAME)) sys.exit(1) self.modules_instances.pop(init_order) self.modules_instances.insert(init_order, module) print(" {0} initilized".format(module.INIT_NAME)) def modules_init(self): for key in self.modules_classes: asycn_init = self.modules_classes[key]["AsyncInit"] if asycn_init: thread = threading.Thread( target=self._module_init, args=([key]) ) thread.daemon = True thread.start() else: self._module_init(key) self.modules_instances = [ inst for inst in self.modules_instances if inst is not None ] index = list(range(len(self.modules_instances))) for instance, n in zip(self.modules_instances, index): instance.INIT_ORDER = n def start(self): self.kill_processes() # FIXME make sure only one instance is running # save main pid with open(self.pidfile_path, "w") as pidfile: pid0 = str(os.getpid()) pidfile.write("%s\n" % (pid0)) print(" controller started with PID(s):", pid0) tmp = [] while not self.procmem["StateIO"][0].shutdown: # TODO test if class_import works here (hot reload), should be async call when updating instances # TODO add nice arg to processes # FIXME on_start is out of order for instance in self.modules_instances: # print("tick:",instance.INIT_NAME) shutdown = instance.SHUTDOWN.value if not instance.IS_RUNNING: if instance.IS_PROCESS and not shutdown: instance.IS_RUNNING = True proc = multiprocessing.Process(target=instance._tick) proc.name = instance.INIT_NAME self.processes[proc.name] = proc proc.start() # TODO should save here process pids elif instance.IS_THREAD and not shutdown: instance.IS_RUNNING = True thread = threading.Thread(target=instance._tick) thread.name = instance.INIT_NAME thread.daemon = True self.threads[thread.name] = thread thread.start() elif not instance.IS_MAIN and not shutdown: instance.IS_RUNNING = True instance._start() if instance.IS_MAIN and not shutdown: try: instance.on_tick() except Exception as e: # TODO error reporing format print(instance.INIT_NAME) print(e) if shutdown: tmp.append(instance.INIT_ORDER) # FIXME process is still be visible in top with 0 mem, when it is shutdown tmp.reverse() for n in tmp: name = self.modules_instances[n].INIT_NAME if self.modules_instances[n].IS_PROCESS: self.processes[name].kill() self.processes[name].join(timeout=0.001) self.processes[name].close() del self.processes[name] elif self.modules_instances[n].IS_THREAD: del self.threads[name] elif self.modules_instances[n].IS_MAIN: self.modules_instances[n]._stop() self.modules_instances.remove(self.modules_instances[n]) print(" {0} is removed".format(name)) tmp.clear() # t_instances = len(self.modules_instances) + 1 # t_threads = len(self.threads) # t_processes = len(self.processes) # t_main = t_instances - t_threads - t_processes # print(" main process instence(s): {0}\n" # " thread instance(s): {1}\n" # " subprocess instance(s): {2}\n" # " total running instances: {3}"\ # .format(t_main, # t_threads, # t_processes, # t_instances # )) time.sleep(1) def on_shutdown(self): """ Called each time application is exiting throught atexit """ # FIXME will error on joystick # TODO make sure threads are exited correctly # TODO wait for processes to exit, check for zombie processes pass def shutdown(self): self.procmem["StateIO"][0].shutdown = True def kill_processes(self): pid = None if os.path.exists(self.pidfile_path): with open(self.pidfile_path, "r") as pidfile: pids = pidfile.readlines() pidfile.close() for _pid in pids[::-1]: pid = _pid[:-1] while True: if os.path.exists("/proc/" + pid): print("Attempting to shutdown existing controller:", pid) # FIXME hcitool will hangd when sending SIGINT os.kill(int(pid), signal.SIGINT) continue break def class_import(self, mtype, arg, mname=None): # TODO check if configs class(s) is already imported in config try: print(mtype, arg, mname) class_cfg = self.cfg[mtype][mname][arg] module_name = class_cfg["ModuleName"] cls_name = mtype[:3] + ":" + arg[:3] + ":" + mname + ":" + module_name except KeyError: print("import error: unknown module class name:", arg) sys.exit(1) self.modules_classes[cls_name] = class_cfg try: if module_name != 'BaseModule': folder_name = mtype[:-1] module_path = 'modules.'+ module_name + '.' + folder_name class_name = folder_name.capitalize() module = __import__(module_path, fromlist=[class_name]) self.modules_classes[cls_name]["ModuleName"] = getattr(module, class_name) else: # used for testing module_path = 'controller' module = __import__(module_path, fromlist=['BaseModule']) self.modules_classes[cls_name]["ModuleName"] = getattr(module, 'BaseModule') except AttributeError: print("import error: failed to import class:", cls_name, 'modules.'+ module_name + '.' + mtype[:-1]) sys.exit(1) try: for m in self.modules_classes[cls_name]['InputMem']: if not m in self.procmem: module = __import__('modules.structures', fromlist=[m]) mem = getattr(module, m) self.procmem[m] = multiprocessing.Array(mem, 1) print(" shared memory {0} intialized".format(m)) except AttributeError: print("import error: failed to import input shared memory class:", m) sys.exit(1) try: for m in self.modules_classes[cls_name]['OutputMem']: if not m in self.procmem: module = __import__('modules.structures', fromlist=[m]) mem = getattr(module, m) # mem = getattr(self.imported, m) self.procmem[m] = multiprocessing.Array(mem, 1) print(" shared memory {0} intialized".format(m)) except AttributeError: print("import error: failed to import output shared memory class:", m) sys.exit(1) def _parse_module_args(self, const): if const != 'default': args = const.split(":") return args[0], args[1] else: return const, const def args_import(self, args): if len(sys.argv) == 1: # TODO add default args, when no argements provided print("default args are not implemented!") sys.exit(1) if args.stop: self.kill_processes() sys.exit(0) # reset sys args to avoid interference with other modules sys.argv = [sys.argv[0]] if args.hardware_only: self.class_import("interfaces", args.hardware_only, "hardware") return if args.display_only: interface, controller = self._parse_module_args(args.display_only) self.class_import("interfaces", interface, "display") self.class_import("controllers", controller, "display") return if args.sound_only: interface, controller = self._parse_module_args(args.sound_only) self.class_import("interfaces", interface, "speaker") self.class_import("controllers", controller, "speaker") return if not args.no_hardware: self.class_import("interfaces", 'default', "hardware") # must below hardware, to support no-hardware flag if args.actuators_only: interface, controller = self._parse_module_args(args.actuators_only) self.class_import("interfaces", interface, "actuators") self.class_import("controllers", controller, "actuators") return if not args.actuators_only: self.class_import("interfaces", 'default', "actuators") self.class_import("controllers", 'default', "actuators") if not args.no_display: self.class_import("interfaces", 'default', "display") self.class_import("controllers",'default', "display") if not args.no_sound: self.class_import("interfaces", 'default', "speaker") self.class_import("controllers", 'default', "speaker") if args.keyboard: self.class_import("interfaces", args.keyboard, "keyboard") if args.joystick: self.class_import("interfaces", args.joystick, "joystick")
bitula/minipupper-dev
controller/controller.py
controller.py
py
12,689
python
en
code
2
github-code
6
35449426767
n = input().split() def with_c(c): temp = [] for i in n: if c in i: temp.append(i) return temp def vowel_count(pairs): for i in pairs: i = i.lower() if i.count('a') + i.count('e') + i.count('i') + i.count('o') + i.count('u') != 2: return False else: return True main = [] for word in n: for letter in word: pairs = with_c(letter) if vowel_count(pairs) and len(pairs) == 2: main.append(pairs) else: break else: print(word)
robinroy03/CompetitiveProgramming
VPROPEL POD/09-03-23/main.py
main.py
py
567
python
en
code
0
github-code
6
16616067005
from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.chrome.service import Service from webdriver_manager.chrome import ChromeDriverManager from selenium.common.exceptions import NoSuchElementException import logging def has_booking_started(url: str) -> bool: options = webdriver.ChromeOptions() options.add_argument("--headless=new") options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_experimental_option('excludeSwitches', ['enable-logging']) driver = webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=options) driver.implicitly_wait(0.5) driver.get(url) try: if driver.find_elements(By.XPATH, '//button[@data-name="get-tickets"]'): logging.info("Ticket booking has started") return True else: logging.info("Ticket booking hasn't started yet") return False except NoSuchElementException: logging.info("Ticket booking hasn't started yet") return False finally: driver.close()
CreatorSky/cineplex-notifier
utils/selenium_utils.py
selenium_utils.py
py
1,128
python
en
code
0
github-code
6
14223858027
# Clase 1 import machine, time from machine import ADC # file=open("data.csv","w") # creation and opening of a CSV file in Write mode # # Type Program Logic Here # file.write(str(value)+",") # Writing data in the opened file # # file.flush() # Internal buffer is flushed (not necessary if close() function is used) # file.close() # The file is closed rtc = machine.RTC() #rtc.datetime((2020, 1, 21, 2, 10, 32, 36, 0)) print(rtc.datetime()) value_ad = ADC(26) print("Starting...") file = open("data/data.txt","w") # creation and opening of a CSV file in Write mode led = machine.Pin(25, machine.Pin.OUT) while True: n = value_ad.read_u16() print(n) file.write(str(n)+",") # Writing data in the opened file file.flush() # Internal buffer is flushed (not necessary if close() function is used) time.sleep(1) file.close() # The file is closed
giulianopalmisano/PDMyE
main.py
main.py
py
877
python
en
code
0
github-code
6
14187604894
from kingadmin.admin_base import BaseKingAdmin class AdminSite(): """用于注册用的类""" def __init__(self): self.enabled_admins = {} def register(self, model_class, admin_class = None): """注册admin表""" app_name = model_class._meta.app_label model_name = model_class._meta.model_name if not admin_class:#为了避免多个model共享一个BaseKingAdmin内存对象 admin_class = BaseKingAdmin() else: admin_class = admin_class() admin_class.model = model_class #把model_class赋值给了admin_class if app_name not in self.enabled_admins: self.enabled_admins[app_name] = {} self.enabled_admins[app_name][model_name] = admin_class site = AdminSite()
MurrayXiao/SchoolCRM
kingadmin/sites.py
sites.py
py
789
python
en
code
3
github-code
6
35613748044
from collections import OrderedDict # from datetime import datetime from django.conf import settings from django.db import models from django.utils import timezone from jsonfield import JSONField # Create your models here. class fhir_Consent(models.Model): """ Store User:application consent in fhir format """ user = models.ForeignKey(settings.AUTH_USER_MODEL) application = models.ForeignKey(settings.OAUTH2_PROVIDER_APPLICATION_MODEL) consent = JSONField(load_kwargs={'object_pairs_hook': OrderedDict}) created = models.DateTimeField(blank=True, null=True) revoked = models.DateTimeField(blank=True, null=True) valid_until = models.DateTimeField(blank=True, null=True) key = models.TextField(max_length=250, blank=True, null=True) def save(self, *args, **kwargs): ''' On save, update timestamps ''' if not self.id: self.created = timezone.now() # Update the key field self.key = self.user.username + ":" + self.application.name + "[" self.key += self.created.strftime('%Y-%m-%dT%H:%M.%S') + "]" if self.valid_until: # print("\nChecking valid_until" # " still valid:%s\nType:%s" % (self.valid_until, # type(self.valid_until))) if self.valid_until <= timezone.now(): if not self.revoked: self.revoked = self.valid_until return super(fhir_Consent, self).save(*args, **kwargs) def revoke_consent(self, confirm=False, *args, **kwargs): if confirm is True: if not self.revoked: self.revoked = timezone.now() return super(fhir_Consent, self).save(*args, **kwargs) def status(self): consent_status = None if self.revoked: consent_status = "REVOKED" else: consent_status = "VALID" return consent_status def granted(self): if self.created and self.revoked: valid = False else: valid = True return valid def __str__(self): name = '%s %s (%s)' % (self.user.first_name, self.user.last_name, self.user.username) return ("%s:%s" % (name, self.application.name)) def __unicode__(self): name = '%s %s (%s)' % (self.user.first_name, self.user.last_name, self.user.username) return ("%s:%s" % (name, self.application.name))
shihuaxing/hhs_oauth_server
apps/fhir/fhir_consent/models.py
models.py
py
2,578
python
en
code
null
github-code
6
36517071630
import time def reverseTimSort(array): for i in range(len(array)): for j in range(i): if array[j] > array[i]: array[j], array[i] = array[i], array[j] return array def getBiggerValue(array): biggerValue = 0 for item in array: if item > biggerValue: biggerValue = item return biggerValue def convertValueToCents(value): return int(float(value) * 100) def openFile(filename): with open(filename, 'r') as f: value = convertValueToCents(f.readline()) coins = [] for line in f: coins = coins + line.split() coins = [int(coin) for coin in coins] return value, coins def countCoins(coins): count = 0 for coin in coins: count += coin * coins[coin] return count def validate(coins, change, value): return change == countCoins(coins) and change >= value def getTime(func, filename): value, coins = openFile(filename) start = time.time() change, changeCoins = func(value, coins) end = time.time() print("Value: ", value) print("Change: ", change) print("Coins: ", changeCoins) print("Is valid: ", validate(changeCoins, change, value)) print("Tempo de execucao: ", end - start)
taylorbyks/paa-coins-change
utils.py
utils.py
py
1,273
python
en
code
0
github-code
6